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Nomenclature My(&¢) and M,(&) bending moment along the beam-
column about the x- and y-axes, respectively
A cross-sectional area of the beam-column L span of the beam-column
Asyand A, effective shear areas along the x- and y-axes, P end axial load applied at the centroid of the
respectively cross section with coordinates (x,, 0); tensile
Ay, Ay As, As, As and Ag constants required in the positive

vibration analysis of the beam-column in the

Sax» Say and Spy, Spy, stiffness of the lateral bracings at

yz-plane ends A and B along the x- and y-axes,
E, elastic modulus of the beam-column along the respectively

z-axis t time
F,, F,, F3 and F, constants required in the vibration T torsional moment

analysis of the beam-column in the xz-plane u(z, t) lateral deflection of the shear center of the
Gxand G, transverse shear moduli of the beam-column member along the x-axis

along the x- and y-axes, respectively v(z, t) lateral deflection of the shear center of the
Gy shear modulus of the beam-column under member along the y-axis

torsion Vg lateral deflection of the centroidal line of the
Hyand H, shear force along the member in the x- and y- member along the y-axis

directions, respectively z centroidal axis of the beam-column
I, torsional inertia per unit of length of the

beam-column about z-axis

I, and I, second moment of area of the beam-column
cross section about the x-axis

] torsional moment of inertia of the cross
section of the beam-column

Jax» Jay and Jpy, Jp, rotational inertias of the masses at
ends A and B about the x- and y-axes,
respectively

Jay and J,,, torsional inertias of the attached masses at
ends A and B about the z-axis, respectively

m mass per unit length of the beam-column

mL?r; and ML?r2 rotatory inertias of the beam column
about the x- and y-axes, respectively

M, and M, rigid masses attached at the top and bottom
ends of the beam-column, respectively

yx and y, shear distortion of the member cross section
caused by transverse shear in the x- and y-
directions, respectively

0x and 0, bending rotations of the member cross section

about the x- and y-axes

torsional rotation about the shear center S

along the z-axis of the member [=¥(z) sin wt]

Kax Kbx and Kpy, Kpy stiffness of the rotational restraints
at ends A and B about the x- and y-axes,
respectively

Kay and Ky stiffness of the torsional end restraints at
ends A and B, respectively (force x distance/
radian)

Y (z,t)

1. Introduction

The stability and dynamic behavior of beams and beam-columns are of great importance in structural dynamics,
aerospace and earthquake engineering. The vibration analysis and seismic response of framed structures modeled as 2D
beams and columns have been studied by many researchers and treated extensively in the literature (see Thomson [1],
Blevins [2], Berg [3], Paz [4], Clough and Penzien [5], Chopra [6], among others) using different methods. Aristizabal-Ochoa
[7] has shown that the classic solutions for the vibration of 2D beams and beam-columns based on the Bernoulli-Euler
theory (that neglects the combined effects of shear deflections and rotational inertias along the member) violate the
equation of bending moment equilibrium, and consequently violate the principle of conservation of angular momentum. To
overcome these deficiencies Aristizabal-Ochoa [8,9] developed a method that determines the buckling loads and natural
frequencies of 2D shear beam-columns and shear buildings with generalized end conditions subjected to concentric linear
axial load along the member including the effects of end rotations and rotational inertias as well as the P-Delta effects.
However, 2D models generally do not take into account the real 3D behavior and the couplings amongst all deflections
(shear, torsional and rotational) and the translational, rotational and torsional inertias, as well as the second-order
(or P-Delta) effects.

The dynamics of 3D beams and beam-columns have been studied by many researchers. Banerjee et al. [10] studied the
warping effects on the natural frequencies of thin-walled beams with open sections. Banerjee [11] analyzed the influence of
the axial load on the natural frequencies of a cantilever beam. Li [12] presented the dynamic transfer matrix based on
Bernoulli-Euler beam theory including warping effects. Rafezy and Howson [13] developed the dynamic stiffness matrix
for a 3D shear beam with asymmetric cross section neglecting the effects of the axial load and bending rotations. More
recently, Viola et al. [14] investigated the changes in the magnitude of natural frequencies and modal response introduced
by the presence of a crack on an axially loaded uniform Timoshenko beam using the dynamic stiffness matrix. However,
studies on the stability and free vibration of 3D beam-columns with generalized end conditions including the combined



J.E. Monsalve-Cano, J. Dario Aristizabal-Ochoa / Journal of Sound and Vibration 328 (2009) 467-487 469

effects of shear and bending deformations, translational, rotational and torsional inertias as well as P-Delta effects are
practically nonexistent. Therefore, there is a real need for a practical approach by which the stability and dynamic
characteristics (i.e., buckling loads, natural frequencies and modal shapes) of 3D asymmetrical beam-columns with any end
support conditions can be determined directly.

The main objective of this paper is to derive using the “modified” shear equation described by Timoshenko and Gere
[15] the characteristic equations for the undamped natural frequencies and the corresponding modes of vibration of an
orthotropic singly symmetrical 3D Timoshenko beam-column with generalized support conditions (i.e., with semirigid
flexural restraints and lateral bracings as well as lumped masses at both ends) subject to a constant eccentric axial load at
both ends. The proposed model is an extension of a 2D shear beam-column model developed by Aristizabal-Ochoa [7] and
is more general than any other model available in the literature including that presented by Banerjee [11], since it includes
generalized support conditions, orthotropic material properties, the effects of the shear force components induced by the
applied axial force as the member bends according to the “modified” shear equation (or Haringx approach), and end
masses. All these additional considerations and effects are important in the analysis and design of buildings and beam
structures with semirigid connections, particularly when made of composite materials. The effects of the shear force
component induced by the applied axial force as the member bends about one of its principal axis and buckling (under
both axial tension and compression forces) have been investigated experimentally and analytically by Kelly [16], Roberts
[17], and discussed recently by Aristizabal-Ochoa [18]. However, the effects of warping torsion are not included in this
study since it would require a much more complex model. To include these effects the model would become extremely
complex since it must include not only warping boundary conditions at both ends, but also the three dimensional couplings
between “mixed” torsion and biaxial bending caused by the applied loads as explained by Curver [19]. This objective is
beyond the scope of this paper. Consequently, the proposed method is not capable of capturing the phenomena of torsional
buckling or combined bending-torsional buckling reported by Timoshenko and Gere [20, pp. 225 and 229]. Four examples
are included that show the simplicity and versatility of the proposed model and corresponding equations in the
shear-bending-torsional free vibration of an orthotropic singly symmetrical 3D beam-columns with generalized support
conditions.

2. Structural model

Consider the singly symmetric 3D Timoshenko beam-column shown in Fig. 1 of length span L with closed cross section
with the shear center S located a distance x,, from its centroid or mass center C along the axis of symmetry x. It is assumed
that the member is prismatic with straight centroidal axis z, subject to a constant axial load P (+ tension, — compression)
applied at both ends and along the z-axis, and mass per unit length m. Two rigid masses of magnitude M, and M, are
attached to its ends A and B with the corresponding rotational and torsional inertias Jux, Jay» Jay and Jpx, Jby, Joy about the
X-, ¥- and z-axes, respectively. The properties of the member include: moments of inertia I, and I, about its cross section
main centroidal axes x and y; torsional moment of inertia J and torsional shear modulus G,y; cross-section area A and axial
modulus E;; effective shear-areas Ag and Ay, with the corresponding shear moduli G, and G,; end torsional restraints xqy
and Kpy; end bending restraints xqx, Kpx and Kqy, Kpy about the local principal x- and y-axes, and end lateral restraints Sax, Spx
and Sy, Spy along the local principal x- and y-axes, respectively. Note that the end bending restraints xqy, Kpx and Kqy, Kpy as
well as the end torsional restraints 4y and xp, (whose dimensions are in force-distance/radian) vary from zero for
perfectly hinged connections to infinity for fully restrained connections (i.e., perfectly clamped conditions). Likewise the
end lateral restraints Sq, Spx and Sgy, Spy (Whose dimensions are in force/distance) vary from zero for unbraced end
connections to infinity for fully braced end connections.

The elastic axis (assumed to coincide with the z-axis) deforms with translations u(z, t) and v(z, t) in the x- and
y-directions, respectively, and with a torsional rotation y/(z, t) about the z-axis (where t denotes time). Note that for the
singly symmetric beam-column of Fig. 1, the translation u(z, t) which takes place in the xz-plane is uncoupled with the
torsional rotation y(z, t), whereas the translation v(z, t) is coupled with y/(z, t). Two additional degrees of freedom must be
added, these are 0, and 0, which represent the rotations of the member cross section caused by the bending moments
about the x- and y-axes, respectively. The buckling and free vibration analyses about the x—z and yz-planes of a singly
symmetric Timoshenko beam-column are shown in the following sections.

2.1. Buckling and free vibration analyses in the xz-plane

Egs. (1) and (2) can be obtained applying transverse and bending moment equilibrium when the member deflects in the
xz-plane:

=M, 9]

oM, u ., ,3%0,
g_HX—Pa—mL s ——
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Fig. 1. Structural model: (a) member properties, masses and end connections; (b) forces and moments on the infinitesimal element (yz-plane); (c) forces
and moments on the infinitesimal element (xz-plane); (d) displacements of the closed cross section during the vibration in the xz-plane; and (e) bending
and shear deformations at a cross section in the xz-plane.

According to Haringx’s approach (explained by Timoshenko and Gere [15]): Q,=Hx—P0,=G,A)y and

ou
Yy =7z, 3)
ou
Hx = GxAsx & - ey +P9y, (4)
o0
My = —Ezlya—zy. (5)
Using expressions (3)—(5), equilibrium Eqgs. (1) and (2) can be expressed as follows:
d*u o0, a0, __d’u
G"AS"<622_62> +P§—mm_0, (6)
B0 4 G-y (2 0,) —mze 0 _ g 7
zy@"‘(xsx_ )E_y —m ryW: . (7
The solutions to Egs. (6) and (7) with P (+ tension, — compression) are assumed to be of the form:
u(z,t) = Uz)sinwt, ®)
0y(z,t) = Oy(2)sinwt. 9)

Substituting expressions (8) and (9) into Eqgs. (6) and (7):

2
GxAsx (au_a@) +P%+mw2uz 0, (10)
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%0,

E.l, 2

ouU _
+ (GeAse — P) (E - @y> + ML’ Oy = 0.
Egs. (10) and (11) can be reduced to a single differential equation of four-order as follows:

dv d
—+
det Py d

2 22 2 4 2.2
Sy +busy — by +byry) sary

2
U
2 + (b2p2s2 + bisir2 — b2)U = 0,

471

am

12)

where ¢ =z/L; b2 =mw?L*/E,l,; p2=PL?/E,l, (axial-load parameter); s2 = E,l,/GAxL? (bending-to-shear stiffness

parameter); and rj = I,/AL? (slenderness parameter).

The solution to Eq. (12) is of the form U=ce™ which after being substituted into Eq. (12) yields the following auxiliary

equation:
m* + (pjsz + bisi — pi + birym? + (b2p2sa + bisiry — bl) = 0.

The solution to Eq. (13) is of the form:

m? = —Q+e,
where
o _ Pusi + bisi —pi + biry)
= 5 :
and
&= \/4(pis? + b3sz — p} + b2r3)* — (b2plsk + bisir} — b2).
Therefore, the four roots are
m=+yv-1+n,

where y = e+ Q; and n = Ve — Q.
The lateral deflection U can now be expressed as follows:

U(¢) = F; coshné + F, sinh & + F3 cos x& + Fy sin &
and the rotation @, of the cross section caused by bending along the member:

) . A . B
0,¢) = I[Fl sinhné + F, coshy&] + Z[F3 sin y& — F4 cos y¢&].

13)

(14

15)

(16)

a7

Now, applying the following four boundary conditions (i.e., transverse and rotational dynamic equilibrium at the ends)

in terms of the nondimensional parameters as the member AB deflects on the xz-plane:

dUu
AtA¢=0: (dg’

) + (P52 — 1)@y — (Sax — Mqb2s2)Uy = 0,
a

de - _
<d—fy> — (Ray _]aybg)@ay = —Pﬁxx.
a

du <
AtBE=1: (d?) + (D252 — 1)Opy + Spy — Myb2s2)U, = 0,
b

de - _
( dg’)b + (Rby _]bybﬁ)@by = _plz.lxot-
Using expressions (16) and (17) the following expressions can be obtained directly:

CCITLf] = Finsinhné + Fon coshné — Fsysin y& + Fay cos y&;

dd—@éy = On[F;, coshné + F, sinhn&] + Ay[Fs cos y& + F4 sin y&];

Uy = F; + F3; Uy, = Fy coshy + F, sinh#y + F5 cos y + F4 sin y;

(d—l{) =nF, + yFa; (d—u> = n(F; sinhn + F, coshn) — x(F3 sin y — F4 cos y);
dé/, ¢/,

(18)

(19)

(20)

21
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Ouy = 0F, — AF4; ®p,, = J[F;sinhn + F,coshy] + A[F3siny — F4cosy];

(d@y> = onFy + AyFs; (d®y> = on[F; coshn + F, sinhn] + Ay[F3 cos y + F4 sin xJ;
a b

dé dé
where
2 4 p2e2 2 4 22
= L DSy g5 MBSy
X(l _pusu) 11(1 — DuSu
Characteristic equation. Eqgs. (18)-(21) can be expressed in matrix form as follows:
€11 Ci2 C13 Cy4 Fi 0
Co1 €2 €3 Cu|[Fa| —DiXy
€31 C3 €33 G| | Fs (™ 0 ’
C41 Ca2 C43 Caq | | F4 —p2X.
where

Xy =Xy /L; c11 =13 = —Sax — b2s2Ma); €12 =+ (p2s2 — 1)5;

2

Cia =y —3sa — DA a1 =01 = —(Ray —biJa)d; €23 = 2% C24 = (Ray — b2 )

31 = [+ (Pisi — 1Do)sinh g + (Spx — bisgMy)cosh;  cs = [+ (pasi; — 1)d]cosh i + (S, — bsgMy)sinh17;
C33 = L=y + (Pish — DAIsinyg + Spx — BiSEMy)cos 1 Caa = Ly — (pis; — 1)A1€0s 1 + (Spx — bis;Mp)sin 1;
C41 = oncoshn + (Ryy — baJp,)dsinhn; sz = nsinhny + (Ry, — bJy,)d coshy;

C43 = [Ax oS g + (Ryy — b2 p)isiny] and cas = [Aysiny — (Rpy — bZJ )7 cos y.

(22)

Eq. (22) represents the dynamic stability of a singly symmetric Timoshenko beam-column with generalized end

conditions when it bends in the xz-plane only.
2.2. Buckling and free vibration analyses in the yz-plane (shear-bending-torsional coupling)

Knowing that the relationship between the lateral deflection of the centroid and the shear center is

Vg =V —Xy¥);
Transverse Equilibrium : % = maz% =m (Zzt;/ Xy a;%) ;
Bending Moment Equilibrium : 62;”‘ =Hy - P<2—Z — Xy %) —mL*r2 aaztOZX ;
Torsional Moment Equilibrium : g =1, aaztlzp — mx, ?;T;/

where I, = (T /A)Ix + Iy) + Tx2.
Using Haringx’s approach (explained by Timoshenko and Gere [15]): Q,=H,—P0,=G,As,7x and

ov
Yx= oz Ox,

ov
Hy = G,Ay (5 - ox) + PO,.

Knowing that

_ oY I, Oy ov
T= G"yjﬁ_z+Pﬁa_z_Px°‘§’
and
0

00x
My = —EZIxE.

(23)

(24)

(25)

(26)

27)

(28)

(29)

(30
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Substituting expressions (27)-(30) into Eqs. (24)-(26):

?v 00y 00, _ (% %y
GyAsy(az2_az>+Paz_m e Moe ) =0

020, ov Y 5 5 0%0,
EZIXW+(G},ASY—P)<§—BX> +me§—mL Ty e =0,
Py I, %y *v Yy _ v
nyf@“’(ﬁ@‘ 5z | o T Mg =0

Also knowing that m = pA and Lry = /Ix/A, Egs. (31)—(33) become
GyAsy (V" — 0% ) + PO — (i) — X,3) = 0,

E 0% + (GyAsy — P)V' — Ox) + Pxyi) — ply0y =0,

I ..
Gy + P(%l//” - xdv”) — Ly +mx, v = 0.

The solutions to Eqgs. (34)-(37) are of the form
v(z,t) = V(2)sin wt,

Ox(z,t) = Ox(2)sin wt,

Y(z,t) = P(z)sinwt.

Substituting expressions (37)-(39) into Eqs. (34)-(36):
GyAsy(V" — Oy ) + PO} + Mw?V — Mw*x, ¥ =0,

E.k O} + (GyAsy — P)V' — Oy) + Px, V' + ply* Oy = 0,

Gy JP" + P(%’ | X1V’/> + L,* ¥ —mw?x,V = 0.

473

€)0)

(32)

(33)

€]

(35

(36)

37
(38)

(39)

(34a)

(35a)

(36a)

Introducing the nondimensional length ¢ = z/L, and differential operator D = d/d¢ and applying the chain’s rule:

GyAsy(V" —LO% ) + PLO} + Mw?L?V — Mw?x, 2P =0,

EkO% + (GyAsy — P)LV' — [2Oy) + Px, LV’ + pLy*[*O = 0,

Gy JP" + P(%‘ P xav”) + L? PP — Mw?x, 12V = 0.
Eqgs. (34b)-(36b) expressed in matrix form become
GyAgyD? + mw?1? (P — GyAg)LD —Mw?x,L? v
(GyAsy — P)LD E.IkD? + (P — GyAsy)L? + ply?L? Pxy,LD 0. _o
Y =
—Px,D? — mw?x,[? 0 Gy JD? + P%‘D2 + Lw?I? 14

Using Gauss elimination and expanding the determinant:
(DS +aD*—bD*> —©)T=0 withT =V, Oxor ¥,

where

_ - azb2(1 + Czpzsz) _ a262p4 _ bz(pz _ bzsz) +p452(b2 + azczpz).
a=br;+ 0+ a?p? ;
b4(1 _ bzszrf) _ a2b4czsz(1 +p2rf) + a2b2(262p2 _ bzrg) _ bzpzsz(bz + 2a262p2)_

b= b? + a?p?

(34b)

(35b)

(36b)

(37a)

(38a)
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and
a’b*c?(1 — b?r2s? — p%s?)

= b2 + a2p?

The stability and free vibration analyses of the singly symmetric 3D orthotropic Timoshenko beam-column of Fig. 1
depend on the following 34 variables: E,, Gy, Gy, Gyy, A, Asx, Asy, Ix, Iy I, J, L, Xo, P, T, O, Kax, Kays Kayr Kbxo Kbys Kby Saxs Say Sbx,
Sby, Ma, M, Jax» Jays Jays Joxs Joy @and Jpy. However, these variables can be grouped into 28 dimensionless parameters and indices
as follows: a? = [,w?L?/GyJ, b2 =Mw?L*/E,l,, b?>=mMw?L*/El (frequency parameters); c? =1 - mx2/I, (axial-load
eccentricity parameter); p? = PL?/E,l,, p?> = PL? /E,I, (axial-load parameters); s2 = E,I,/GcAsxxL?, s? = E;I;/GyAsyL? (bending-
to-shear stiffness parameters); r2 = I,/AL?, rf =I,/AL? (slenderness parameter); Rax = Kax/(E-Ix/L), Ray = Kay/(E-ly/L),
Rpx = Kpx/(Ezlx/L), Ryy = Kpy/(E-ly/L) (bending indices at ends A and B, respectively); Sax = Sax/(GxAsx/L), Say = Say/(GyAsy /L)
and Spy = Spx/(GxAsx/L), Sty = Spy/(GyAsy/L) (lateral bracing indices at ends A and B, respectively); Mq = My/mL and M, =
M,/mL (mass indices at ends A and B, respectively); Jo, = Jax/TL3, J oy = Jay /L3, [y = Jp/TL3, Jpp, = Jb, /ML (rotational-
mass indices at ends A and B, respectively); Jq; =Jay/lul, Jpy =Jpy/lsL (torsional-mass indices at ends A and B,
respectively); and K = Kay /(GyyJ/L) and Ky, = Ky /(GyJ/L) (torsional indices at A and B, respectively).

Solutions to Eq. (38) are taken from (http://mathworld.wolfram.com/search/) as follows:

q [) q 1/2 q - ¢ I 1/2 q n—|—d) q 1/2

d _
o= {2\@&5(?) _4 ; p= [2@@5( 3 >+§ ;Y= {2\/%05( 3 >+§} s
_,(27¢ — 9ab — 2@°)

where

q =E+%(6)2 and ¢ = cos

2(@ + 3b)*/?
The displacement V(§), bending rotation @,(¢), and torsional rotation ¥(&) are expressed as follows:
V(&) = Aq coshoé + A; sinh o + Az cos fE + Ay sin fE + As cos yE + Ag sinyé; (39a)
O4(&) = By sinhoé + B, cosh o + Bs sin & + B4 cos fE + Bs siny& + Bg cos y¢&; (40)
Y(&) = Cy coshaé + G, sinhaé + Cs cos fE + C4 sin SE + Cs cos pE + Cg sinyé. 41

From Eq. (34a):

_ GyAy(V" — B4) + PO} + mw?V

b4 M2
Mw2x,

(42)
Substituting expressions (39), (40) and (42) into Eq. (35a), coefficients B;-Bg are obtained in terms of coefficients A;-Ag
as follows:
By =A10/L; By =Ay0/L; B3 =—Asf/L: By=Asf/L: Bs=-As7/L: and Bg=Asy/L;
where

_ (1 + o2b=2p?) )
T 1722 — 252 — p2s2(1 + a2b2p?) + o2b2p?’

S

_ B — p*b=2p?) :
1—b2s2r2 + [2s2 — p2s2(1 — B*b—2p?) — f*b-2p2’

=|

. 71 —7?b~?p?)
Y =1z b2s2r2 + y2s2 — p2s2(1 — y2b-2p2) — y2b-2p?"

Likewise, substituting expressions (39), (40) and (42) into Eq. (36a), coefficients C;-Cg are obtained in terms of
coefficients A;-Ag as follows:

G :Alkat/xoz; G :Azka/xzé G :A3kﬁ/xz;
Cq = Agkg/xy; Cs =Asky/xy;  Co = Agky /Xy,

where

_@®rpad-c) O -p A=) @B —py) =),
* 7 a2(b? + p2o2) + b2o2’ b= a(b? — p2f%) — 22 7T @(b? = p2y2) — b2y?’
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d—‘g = Ajasinhaé + Ayacoshoé — A3 fisin fE + Agf cos fE — Asy sinyé + Agy cosy&;
doy 1 _ : 7 P - sy
a =1 [ccot(Aq cosh o + A, sinh o) — B(As cos BE + Ay sin fE) — YP(As cos pE + Ag siny&)];
d—lp = k—“‘ (A1 sinh ¢ + A, coshaé) — k—ﬁﬁ(Ag sin & — A4 cos &) — kly(As siny¢ — Ag cos y&).
di Xy Xo Xo
From Eq. (28):
_[av 59 GyAsy
or
. . . . G,A
Hy(&) = [8x(A; sinh o + Ay coshal) — gg(As sin fE — Ag cos BE) — g,(As siny¢ — Ag cos &)] % : 43)
From Eq. (29):
B a?p?\ d¥Y  a?p?(1 — c?)dV] GyyJ
ro=[(1+ %) @~ ap a1
or
T(¢) = %(& sinhaé + A; coshaé) — @(& sin B& — A4 cos BE) — Vx—e”(As siny¢ — Ag cos y&) % (44)
oL oL oL
From Eq. (30):
. EldOy
or
My (&) = —[o@(A; coshoé + Aysinhaé) — BB(AzcosBE + Assinfé) — y7(Ascosyé + Agsiny&)] ELZZI" , (45)

where g, = o0+ (p?s> — 1)%; gy =+ P>’ - DB g =7+ @S> - Dy

a2p? a2p?(1 — ) a?p? a@?p?(1 — ¢?) a2p? a?p?(1 — ¢?)
ey = (1 +b_2)k“ o &= <1 +b—2>k,; - and e, = <1 +7>ky -

Now, applying the boundary conditions when the member bends in the yz-plane and twists about the z-axis
simultaneously, the following expressions for the shear forces, bending moments, and torsional moments at the ends A and
B can be obtained:

AtA(E=0): Hy = (Say — ©*Mg)Vq; (46a)
Mp = (—Kax + wzjax)@ax; (47a)
Ta = (Kay — ©*Jgy) ¥a. (48a)
AtB (& =1): Hp = (=Spy + @0’ Mp)Vy; (49a)
Mg = (Kpx — ©*Jpx) O (50a)
Tg = (—Kpy + ©*py) V. (51a)

Egs. (46a)-(51a) can be expressed terms of the nondimensional parameters as follows:
% { (3—‘2) + (p?5°L — L)Oux — (Say — Mabzsz)va} =0; (46b)

a

E,l, [ /d6x - s
P (6%~ Roc-Tub?100} =0 (47b)
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Gyl ap?\ /d¥ a?p?(1 —c?) /dv _ -, e
O+ (@), (@), - o Twetrte =0

GYZ‘W { <fl_‘é/> + (P?S’L — L)Opy + (Spy — mbzsz)vb} =0;
b

El, ( (dOy - o
i {( a )b+(be —Jpxb )@bx} =0;

Gyl a’p?\ [d¥ a’p?*(1 —¢?) /dv -, _
P (%) (qe), = (), 0o et -0

Characteristic equation. Knowing that
Va = A1 + A3 + As; Vp, = Ay cosha + A, sinh o + Az cos f + Ag sin f + As cos ) + Ag siny;

dv
(dg)a 2 4f 67
dv . . .
a = (A sinh o + A, cosh o) — (A3 sin f — A4 cos §) — P(As siny — Ag €OS ));
b
1 _ — _
Oun = Z(OCAZ + BAs + VAe);

Opy = %W(/h sinh o + A, cosh o) — f(As sin § — A4 cos ) — J(As siny — Ag cos ))];

(%—%)a = %(Awﬁ —AsBp — AsyD);

d¢

ka k/g ky.
WG—A1E+A3£+A5X—“,

Y, = %(Al cosho 4 Apsinho) + i%(& cosf; + Agsinf)) + %(Ascosy + Agsiny);
o o o

dvy ks, kg k,
—= | =A—a+A-Lp+As-Y;
<dé>a 2y, M A P e,V

<d—'{l) = Ky o(Aqsinho + Aycosho) — ﬁ,B(Agsin[} — Agcosfl) — ﬁ)}(Assiny — AgC0sY).

dé /)y xa Xy Xq

Substituting these expressions into Egs. (46b)-(51b), the 6 x 6 matrix Eq. (52) can be obtained
a1 412 @13 A4 15 Qie Aq
Gy1 Oy (3 Gyq Qs Gy | | A2
a31 Aasz a3z 034 {35 036 As
Q41 Qg2 043 Q44 Q45 dg6 Aq
as1 Gsp Gs3 0Osq Oss Qs | | As
ds1 02 03 Udes Ues U6 As

where

a1y = i3 = 15 = —(Saqy — Mab?s?); a2 = (p?s* — Do+ au = P*s> — D+ B;
e =@ —1)7+7; a1 =ad; axp = —Raux —Juxb?)0;  a23 = —B;

24 = —(Rax —JoxbHB;  Ga5 = —y7; a6 = —(Rax — J b7

(d@") = %[a&(Al cosh o + A; sinh o) — SB(A3 cos ff + Ay sin ) — yP(As cos y + Ag sin y)];
b

(48b)

(49b)

(50b)

(51b)

(52)
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Lk ([, @P*\ ks @®p*(1 —cH)]
s ks :
31 = —(Ray —Jay@ )X—:, as = _(1 + )é—Ta
N I @?p?\ kg a?p?(1 — c2)]
— PA ap) LA p:
a33=—(Ka¢, _]m//a )E’ 34 = _<1+ b2 )E_T~ﬁ'
i K, - a?p?\ k, ap*(1 —c?)]
a35 = —(Kay 7]all,a2)x—a; 36 = »(1+7>£7T.%

ag1 = o+ (p*s® — Dasinh o + (Spy — Mpb*s*)cosho;
ag = o0+ (p*s? — Da|cosh o + (Spy — Mpb?s?)sinho;
g3 = =B+ (p*s® — 1)Bsin B + (Spy — Myb*s*)cos f;
a4 = LB+ (p*s*> — 1)BJcos B + (Spy — Mpb?s?)sin f;
ags = —|y + (p?s® — 1)y Isiny + (Spy — Mpb*s?)cos y;
45 = |y + (ps? — 1)7]cosy + (Spy — Mpb*s?)siny;
as; = loccosha + (Rpx — Jpeb?)sinh o |&;  asy = arsinh o + (Ryy — Jpxb?)cosha]o;
as3 = —| oS B+ (Rpx —Jpub?)sin f1f;  asq = —|Bsinff — (Rpy —Jpxb*)cos B1f;

as5 = — |7 €0S Y + (Rpy — Jpub®)SINPI7;  ase = —[ysiny — (Ryy — Jpeb®)cos p17;

a’p*\ k, a?p*(1 —c? . _ - k.
ag1 = Kl +b—127) ﬁ—%}asmhour(xw —]bwaz)x—;cosha;

a?p®\ k, a?p*(1 —c?) _ - ke . .
ag2 = Kl +—) é—T}acosha + (Kby —]blpaz)ésmha,

a’p?\ ky  a®p*A -], . 1 ok )
Qg3 = — Kl + b—2> X, T}ﬁsmﬁ + (Kpy —]bl/,az)gcos B

a?p\ kg a?p?(1 — c? - kg .

20\ ke a2p?(1 — 2] L I
a65:_Kl+ﬂ>x—y—ch)}ysmy+(KW —]W,az)&cosy;
o Xogb Xy

ap?\ k,  a?p?*(1 —c?) - N
Qg = Kl +—> X T}/cos Y+ Koy —Jpya )ésmy.
Eq. (52) represents the free vibration eigen-value problem of the orthotropic singly symmetric 3D Timoshenko beam-
column shown in Fig. 1 when it bends in the yz-plane and twists about the z-axis simultaneously.

3. Methodology to extract frequencies and modes of vibration from Eqs. (22) and (52)

For the free vibration analyses of an orthotropic singly symmetric 3D Timoshenko beam-column with generalized
boundary conditions (shown in Fig. 1) the following steps are suggested:

(1) Enter the values of: E;, Gy, Gy, Gxy, A, Asx, Asy, I, 1, I, ], L Xo, P, T, Kaxo Kay, Kays Kbxe Kby Kby Saxs Says Sbxe Shys Mar M, Jaxs Jays
Jay» Joxs Joy and Jpy.

(2) Enter the trial value w.

(3) Calculate the 28 dimensionless parameters and indices listed in Section 2.2.

(4) Calculate the values of x, , 4, and ¢ including all 16 coefficients c;; of matrix Eq. (22) and X, = x,/L as shown in Section
2.1 for the stability and vibration analyses in xz-plane. Then by making the determinant of the 4 x 4 matrix of Eq. (22)
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equal to zero, the undamped natural frequencies w can be determined directly for a given value of the applied axial
force P, and the corresponding modes of vibration from Eqs. (16)-(17) once the eigen-vectors (values of F;-F, for each
frequency) are found in a standard manner. Alternatively, by making the determinant of the 4 x 4 matrix equal to zero
the buckling load P, of the member AB can be also determined directly for a given value of w. The static buckling loads
can be also determined from Eq. (22) by making w=0 in the eigen-value problem.

Calculate the values of o, 8, 7, @, B, 7, ks, kg, ky, 4, s, &, including all 36 coefficients a; of matrix Eq. (52) listed in
Section 2.2 for the vibration analyses in yz-plane. By making the determinant of the 6 x 6 matrix of Eq. (52) equal to
zero, the undamped natural frequencies o can be determined directly for a given value of the applied axial force P, and
the corresponding modes of vibration from Eqs. (39)-(41) once the corresponding eigen-vectors (values of A;-Ag for
each natural frequency) are found in a standard manner. Eq. (52) also represents the dynamic stability eigen-value
problem of a singly symmetric Timoshenko beam-column with generalized end conditions when it bends in the
yz-plane and twists about the z-axis. By making the determinant of the 6 x 6 matrix equal to zero the buckling load P,
of the member AB can be determined directly for a given frequency w. The static buckling loads can be also determined
from Eq. (52) by making =0 in the eigen-value problem.

(5

—

It is important to emphasize that Eqs. (22) and (52) which are based on the Haringx’s approach (explained by
Timoshenko and Gere [15]) is capable of capturing the phenomena of buckling under axial tension. This has been proven
experimentally and analytically by Prof. Kelly at UC Berkeley [16] on elastomeric columns (see http://www.ce.washington.
edu/emO03/proceedings/papers/611.pdf) and discussed in detail by the author [8,9,18,21].

4. Illustrative examples

4.1. Example 1: free vibration analysis of a 3D cantilever Timoshenko beam (effects of rotational stiffness at the base support on
the natural frequencies)

Determine the natural frequencies of a cantilever beam assuming the following properties: E,=68.9 x 10° kN/m?;
G,=26.5 x 10°kN/m?; p=2711 kg/m?; A=3.08 x 10~*m?; [,=9.26 x 1078 m*; E,[,=6.38 kN m?; G,A;,=4081kN; G,,J=0.04346
kN m?; m=0.835kg/m; 1,=0.501 x 10~3kg m; x,=0.0155m and L=0.82 m. Analyze the following three cases: (1) P=0; (2)
P=1.79 kN (tension); (3) P=—1.79 kN (compression) and also for (a) pax=1; (b) pax=0.75; (¢) pax=0.5; (d) pax=0.25; and (e)
Pax=0. Compare the results with those presented by Banerjee [11] for case (a), clamped-free with pg=1.

Solution: The natural frequencies corresponding to the first four modes of vibration were calculated making the 6 x 6
determinant from the matrix [D] corresponding to Eq. (52) equal to zero. Table 1 shows the first four natural frequencies of

Table 1
Example 1: effects of the axial load and degree of fixity on the natural frequencies in the yz-plane of a cantilever beam-column (shear-bending-torsional
coupling).

Mode Pax Natural frequency (Hz)
P=0 (p°=0) P=1.79 kN (p?=0.1886) Tension P=-1.79 kN (p?>=—0.1886) Compression
Proposed model Banerjee [11] Proposed model Banerjee [11] Proposed model Banerjee [11]
1 1 62.34 62.34 64.58 64.59 59.98 59.97
0.75 54.44 56.91 51.81
0.50 44.51 47.38 41.40
0.25 31.32 35.11 26.95
0 115.22 15.51 114.17
2 1 129.9 129.9 131.6 131.6 128.1 128.1
0.75 125.2 126.6 123.7
0.50 121.2 122.4 119.9
0.25 1179 119.0 116.7
0 228.0 116.2 223.9
3 1 259.2 259.2 262.4 262.4 256.0 256.0
0.75 248.6 252.0 245.1
0.50 240.0 243.7 236.4
0.25 2333 2371 229.4
0 414.8 2319 409.4
4 1 418.9 424.6 424.6 424.6 413.1 413.1
0.75 417.9 423.5 412.2
0.50 416.9 422.5 411.2
0.25 415.9 421.3 410.3

0 492.2 420.2 489.1
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Fig. 2. Example 1: (a) first-; (b) second-; and (c) third-modal shapes of an axially loaded cantilever Timoshenko beam-column with p?=0.1886,
for p=0; and (d) structural model.
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» X ¥ (———-)

the cantilever beam with three cases different of load and five rotational stiffness .y, calculated for several values of p,
with the following equation:

1
P =T 1 3(E L D) Kax”

(33)
where p, is called the fixity factor. Notice that p, is more convenient to use in the analysis of structures with semirigid

connections since it varies from O (for perfectly hinged connections) to 1 (for perfectly clamped connections), whereas the
rotational stiffness x, varies from O to oo.

The obtained results for the case (a) clamped-free with p=1 were compared with those reported by Banerjee [11]
showing excellent agreement. Figs. 2 and 3 show the shapes corresponding to the first three modes of vibration (translation

V and torsion x,¥) of the cantilever beam-column for different values of p under tension and compression, respectively.
Notice that the high modes of vibration are more sensitive to the degree of fixity at the base.

4.2. Example 2: free vibration analysis of a 3D cantilever Timoshenko beam (effects of torsional stiffness at the base)

Determine the natural frequencies of a cantilever beam assuming the following properties: E,=2.1 x 108 kN/m?;
G,=78.94736 x 10°kN/m?; p=7800kg/m>; A=9 x 10~*m?; [,=19.638 x 108 m*; E,L=41.241669 kN m?; G,A;=35,530kN;
GxyJ=2.368421 kN m?; m=7.02 kg/m; I,=3.237 x 10> kg m; x,=0.0111 m; and L=1 m. Analyze the following three cases: (1)

P=15KkN; (2) P=—15kN; and (3) P=0 and also for (a) Kqy=00; (b) Kay=9GJ/L; (C) Kay=3GJ/L; (d) Kay=GJ/L; and (e) Kqy=0.
Compare the results with those reported by Viola et al. [14] for case (a) clamped-free with xgy=00.

Solution: The natural frequencies corresponding to the first four modes of vibration were calculated making the 6 x 6
determinant of matrix [D] of Eq. (52) equal to zero. Table 2 lists the natural frequencies for three different load cases and

five rotational stiffness xqy. The obtained results for case (a) clamped-free with i,,=co is compared with those reported by
Viola et al. [14]. The first three modes of vibration are shown in Fig. 4.
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Fig. 3. Example 1: (a) first-; (b) second-; and (c) third-modal shapes of an eccentrically loaded cantilever Timoshenko beam-column for two values of p
), X4 W(— — ——) for p=0; and (d) structural model.

The stability and free vibration analyses in the xz-plane of a perfectly clamped cantilever Timoshenko beam-column
following characteristic equation:

with Kp, = Spx = Mg = M =P =0 and Sq=Rq=c0 can be obtained from the 4 x 4 matrix of Eq. (22) resulting in the

/AW . Ay oy

2+ (f—f)sm ¢ sinhy — (—+—)cos ¢ coshn =0,
A CTRY7 ki
where . = (—y? + b2s2)/y; and & = (% + b2s2) /1.

(54)
The natural frequencies for case (a) (clamped-free, pqy= 1) listed in Table 3 were calculated using Eq. (54). The buckling
loads values were calculated using the following characteristic equation:
2+ h_X sin y sinh#y — g+5_11 cosxcoshn:ixp—ﬁ (55)
ron) " on iy by’
where
1t bs n* + bisg
A= and 6= U
x(1 = past) n(1 — pisi)
The corresponding vibration mode shape from Eq. (16):

U(¢) = F3(cos y¢ — coshné) + Fy (sin xE+ g sinh r]é),

(56)
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Table 2
Example 2: effects of axial load and torsional fixity on the natural frequencies in the yz-plane of a cantilever beam-column (shear-bending-torsional
coupling).

Mode Kay Natural frequency (Hz)
P=0 (p°=0) P=15kN (p?=<0.3637) Tension P=—15kN (p?>=—0.3637) Compression
Proposed model Viola et al. [14] Proposed model Viola et al. [14] Proposed model Viola et al. [14]
1 o) 42.538 42.485 45.331 45.270 39.483 39.435
9¢GJ/L 42.497 45.281 39.451
3GJJIL 42.414 45.178 39.385
gL 42147 44,848 39.177
0 46.717 49.823 43.327
2 o 233.548 233.546 235.236 235.239 231.732 231.723
9GJ/L 213.215 214.234 212.120
3¢@J/L 180.648 181.233 180.031
GJIL 130.710 131.109 130.303
0 266.253 269.352 263.104
3 © 276.750 276.737 278.590 278.583 274.988 274.970
9GJ/L 272.099 274.521 269.704
3¢@J/L 269.200 271.985 266.397
gL 267.412 270.398 264.387
0 459.383 460.355 458.409
4 o0 632.144 632.138 634.712 634.735 629.558 629.523
9¢GJ/L 592.006 593.922 590.071
3GJJL 540.781 542127 539.422
GJIL 494.337 495.416 493.253
0 726.330 729.015 723.633
where
A .
. 01+ (pisi — Ddlcoshn + [ — (pisg — Dlcos
F3 = puxx <

AV iy on p?
2+ (— ——)sm ¢ sinhn — ( +~—>cos (coshn — Ays
| x 1 on Ay x 1 Abﬁ

In the case of clamped-free Euler-Bernoulli beam [2,18] the first three natural frequencies are
(1.875)* [EI, (4.694)? [E,I, (7.855)* [E/l,.
N=T Ve 2T Vwme T Ve

and for a clamped-free shear beam [2], the n-frequency is given by (Table 4)

_(@2n—=1m [GyAsx
@n=""51 m

The results obtained using Eq. (54) are compared with results using these formulas in Table 5.

Fig. 4 shows the calculated modal shapes corresponding to the first three modes of vibration and the corresponding
variation of frequencies f against the axial load P for different values of the stiffness of the torsional end restraint xqy, (=0,
GJ/L, and zero).

4.3. Example 3: stability and dynamic analyses of a composite column made of E-glass fiber

Analyze a 200 x 200 x 10 mm composite column tested by Roberts [17] but partially restrained at both ends with the
following properties: E,=1.886 x 107 kN/m?; G,=2.671 x 106 kN/m?; (E-glass fiber) p=2550kg/m>; m=14.79 kg/m; L=4.5 m;
A=5.8 x 1073 m?; A;,=2 x 107> m?; [,=4.16 x 107> m*; S;,=5000 KN/m; Spy=25,000 KN/m; and pay=psy=p. Determine the static
critical loads and natural frequencies.

Solution: The static critical loads (i.e. assuming w=0) corresponding to the first three buckling modes in the xz-plane for
four different cases of fixity factors pq=pry=p=1, 0.75, 0.5, and 0.25 are listed in Table 6. Notice that the compressive
buckling loads are more sensitive to the magnitude of the end bending restraints than those of columns under tension.

Table 7 lists the axial loads corresponding to the first three modes of buckling in the xz-plane for the particular case of
perfectly pinned ends (i.e., pqy=ppy=0 and Sq=Sp,=o0) using the proposed method and that by Arboleda-Monsalve et al.
[20]. The two methods yield very similar results. Notice that the value reported by Roberts [17] of P,=358kN in
compression compares very well with the value of 358.5 kN obtained with the proposed method. The last two columns of
Table 7 and the results listed in Table 8 also show that the proposed method is capable of capturing the critical loads and
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1?=0.000218, s>=0.00116: V( ) X P(— — — ) for Kqy=00; V( ), X W(— — — =) for Kay=GJ/L; V( ), X P (— — — —) for 1qy=0; and (d) variation
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(
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natural frequencies

(nmy?  [EI,
[“’": e Vm

of a pinned-pinned Euler-Bernoulli column (as GyAsx— o).

Table 9 shows the values of the natural frequencies of a partially restrained column for five different values of
Pay=ppy=p=1, 0.75, 0.5, 0.25, 0, and S;,=15,000 kN/m, Sp,=25,000 kN/m and three different values of P=0, 5kN (tension) and
—5KkN (compression).

Fig. 5 shows the variations of the first-mode natural frequency in the xz-plane of the composite column with the applied
axial load P for four different values of pq,=pp,=p=1, 0.75, 0.5, 0.25 and 0. Notice that the first-mode natural frequency: (1)
decreases with the magnitude of the compressive axial load and when the fixity factors are reduced; (2) increases with the
magnitude of the tension axial load up reaching a peak located at a P value slightly less than P, and then decreases rapidly
to zero at P, in tension; and (3) the maximum frequency occurs at P=5340 kN and is not affected by the stiffness of the

rotational restraints.

4.4. Example 4: free vibration of a cantilever Timoshenko beam-column (sensitivity study)

A sensitivity study was carried out on the effects of axial load (tension and compression), axial load eccentricity, and
degree of fixity at the base support on the natural frequencies of a Timoshenko beam-column in the yz-plane (see Fig. 6d).
Figs. 6 and 7 show the variations of the first-mode natural frequency as the applied axial-load varies (from compression
to tension) and as the combined parameter s2b?/a? varies, respectively for five different values of the axial-load eccentricity
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Table 3
Example 2: effects of axial load and degree of fixity on the natural frequencies in the xz-plane cantilever beam-column assuming E.I,=22.575 kN m? and
GxAsx=32,897 kN.

Mode Pay Natural frequency (Hz)
P=0 (p2 =0) P=15kN (p2 = 0.6644) Tension =—15kN (p2 = 0.6644) Compression
1 1 31.674 35.351 27.346
0.75 26.329 30.082 21.754
0.50 20.652 24.783 15.226
0.25 14.048 19.202 4.523
0 138.387 12.664 132.973
2 1 196.324 200.676 191.859
0.75 171.536 176.034 166.903
0.50 156.101 160.844 151.194
0.25 145.751 150.732 140.575
0 442.675 143.576 438.363
3 1 540.344 544.096 536.566
0.75 486.923 490.843 482.971
0.50 463.420 467.502 459.300
0.25 450.634 454.827 446.400
0 905.433 446.944 901.496
4 1 1033.800 1037.400 1030.200
0.75 953.330 957.060 949.585
0.50 926.242 930.073 922.395
0.25 913.119 917.004 909.217
0 1508.900 909.352 1505.200
Table 4
Example 2: effects of degree of fixity on buckling Loads® in the xz-plane.
Mode* Pay P, Proposed model (kN) P, Euler load (kN) Pe/Pe
1 1 55.6 55.7 0.998
0.75 45.1
0.50 321
0.25 16.7
0 2213
2 1 493.9 501.3 0.985
0.75 406.5
0.50 3243
0.25 262.8
0 868.3
3 1 1338.1 1392.5 0.961
0.75 1125.5
0.50 985.10
0.25 910.30
0 1896.0

2 Note: Although the lowest critical buckling load is of main practical importance, the higher buckling modes should be taken in the context of duality
between free vibration and buckling problems.

Table 5
Example 2: natural frequencies for Euler-Bernoulli and shear beams (calculated using proposed model against those obtained from classical formulas).

Mode Natural frequency (Hz)

Proposed model G,A;,— Euler-Bernoulli beam Proposed model E.I, — o Shear beam
1 31.72 31.72 541.19 541.19
2 198.49 198.86 1623.57 1623.57

3 554.29 556.87 2705.95 2705.95
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Table 6
Example 3: effects of degree of fixity on buckling loads.

Mode Pay=Pby P, (KN) Compression P, (kN) Tension
1 1 1241.7 5717.5
0.75 906.6 5597.6
0.50 653.3 5491.3
0.25 479.9 5406.2
0 358.5 5698.5
2 1 2145.6 6581.7
0.75 1725.7 6246.6
0.50 1483.7 5993.3
0.25 1337.7 5819.9
0 1241.7 6581.7
3 1 3640.2 7795.3
0.75 2927.6 7207.7
0.50 2608.2 6863.4
0.25 2461.6 6684.1
0 2381.4 77214
Table 7

Example 3: buckling loads (pinned-pinned column).

Mode P, (kN) Compression P, (kN) Tension Euler-Bernoulli column
Proposed model Arboleda et al. [19] Proposed model Arboleda et al. [19] Proposed model G,As,— o P,
1 358.5 358.0 5698.5 5697.7 382.6 382.6
2 1241.7 1239.5 6581.7 6579.6 1530.4 1530.4
3 2381.4 2379.6 7721.4 7719.3 34434 3443.4
Table 8

Example 3: Natural frequencies calculated using proposed model-versus-classical formulas for Euler-Bernoulli beam.

Mode Natural frequency (Hz)
Proposed model (GAsx— o0) Euler-Bernoulli beam Error (%)
1 17.84 17.87 0.2
2 70.99 71.48 0.7
3 158.37 160.84 1.5
Table 9

Example 3: effects of degree of fixity on the natural frequencies in the xz-plane of a partially restrained PFRP column.

Mode Pay=Pby Natural frequency (Hz)
P=0 (p=0) P=5KkN (p*<0.1290) Tension P=—5kN (p?=—0.1290) Compression
1 1 32.36 32.41 32.31
0.75 26.60 26.66 26.53
0.50 22.54 22.63 22.46
0.25 19.44 19.54 19.34
0 16.91 17.03 16.80
2 1 70.74 70.80 70.67
0.75 65.50 65.58 65.42
0.50 62.36 62.45 62.26
0.25 60.26 60.36 60.16
0 58.76 58.86 58.66
3 1 115.85 115.93 115.77
0.75 112.82 112.91 112.73
0.50 111.39 111.48 111.30
0.25 110.56 110.65 110.46

0 110.02 110.11 109.92
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Fig. 5. Example 3: Variation of the first-mode natural frequency f with the applied axial load P (+ tension) for five different values of the fixity factor p:

() for p=1; ( ) for p=0.75; (—><—) for p=0.5; (---) for p=0.25; (—) for p=0 and assuming that both ends are partially restrained with
Sax=5000kN/m and S,,=25,000 kN/m.

(a) (b)
200 200
T
P y 160 160
bxa
1, 120 e 120
g e
15| 18|
I Il
o 80 o 80
40 40
9
s & 0 0
X 100 20 40 60 80 210 0 20 40 60 80
2 2
PL
pr= PL P =

El, T Ed,
Fig. 6. Variation of the first-mode natural frequency parameter b? for a cantilever beam-column with the applied axial-load parameter p? for five different

values of the eccentricity parameter ¢ [=0.05 ( ); .25(---); 050 (— — —);.75(---); and 1 ( )] for two different values of the fixity factor p:
(a) p=0.5; and (b) p=1 assuming a bending-to-shear stiffness parameter s?=1/1000.

parameter c? and for two different values of fixity p (0.5 and 1) at the base of the cantilever. Notice that: (1) b?s2/a? =
MGyyJ/1,GyAsy is the combined torsional-shear parameter; (2) the eccentricity parameter cz2=1- Wxi/la varies from 1
(zero eccentricity) to 0 (maximum eccentricity); (3) a? = I,w?L?/Gy,J and b? = Mw?L*/E,I, (frequency parameters),
p? = PL? /E,I, (axial-load parameter) and s? = E,Iy/G,AsL? (bending-to-shear stiffness parameter).

Based on the results indicated by Figs. 6 and 7 it is concluded that the first-mode frequency in the yz-plane increases:
(1) almost linearly as the axial load is increased in tension, but it is reduced by compressive axial loads; (2) with the degree
of fixity at the base p but it is reduced by the torsional effects caused by the eccentricities (of the axial load and those of the
masses); and (3) low shear stiffness always have the effect of reducing the natural frequencies, whereas tension axial loads
increase substantially the natural frequencies.
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Fig. 7. Variation of the first-mode natural frequency parameter b? for a cantilever beam with b?s?/a? for five different values of the eccentricity parameter
2 [=0.05 ( );0.25(---); 0.50 (— — —); 0.75(---); and 1 ( )] for two different values of the fixity factor p: (a) p=0.5; and (b) p=1 assuming an
axial load parameter p?<0.

5. Summary and conclusions

The stability and free vibration analyses (i.e., lateral buckling loads, natural frequencies and modal shapes) of an
orthotropic singly symmetrical Timoshenko beam-column with generalized support conditions (i.e., with semirigid flexural
and torsional restraints and lateral bracings about and along the principal axes of bending as well as lumped masses at both
ends) subjected to an eccentric end axial load are derived in a classic manner. The proposed model include the three
dimensional coupling effects of all deformations (i.e., bending and shear about and along the principal axes of bending as
well as those caused by pure torsion along the axis of the member), a uniform mass distributed along its span, the applied
eccentric axial load (tension or compression) at both ends, the three dimensional inertias (translational, rotational and
torsional) of all masses considered. The effects of the shear force component induced by the applied axial force as the
member bends about each of its principal axes have been included as suggested by Haringx [16-18]. However, the effects of
warping torsion, torsional stability and combined bending-torsional buckling are not included in this study since it would
require a much more complex model. To include these effects the model must include not only the three dimensional
couplings between “mixed” torsion and biaxial bending as shown by Curver [19] but also extremely complex semirigid
conditions to resist warping torsion at both ends. Consequently, the proposed method is not capable of capturing the
phenomena of torsional buckling or combined bending-torsional buckling. However, the proposed model is more general
than any other model available in the technical literature including that presented by Banerjee [11] and Aristizabal-Ochoa
[18], since it includes generalized 3D support conditions, orthotropic material properties, the effects of the shear force
components induced by the applied axial force as the member bends about both principal axes (according to the
“modified” shear equation or Haringx approach), and 3D end masses. All these additional considerations and effects are
important in the analysis and design of buildings and beam structures, particularly when made of materials with low shear
moduli.

The stability and free vibration analyses of a singly symmetrical orthotropic Timoshenko beam-column as presented in
this paper depend on 34 variables: E,, G, Gy, Gxy A, Asx, Asys I, Iy, 1, ], L X, P, T, @, Kax, Kays Kayr Kbxo Kby, Kby Saxs Says Sbxr Shys
Ma, My, Jaxs Jay Jays» Jox» Jby and Jp,,. However, these variables can group into 28 nondimensional parameters and indices. The
proposed equations have the capability of modeling the simplified beams, and beam-columns cases like those based on the
following classic theories: (1) Bernoulli-Euler; (2) Rayleigh; (3) Timoshenko; (4) shear beam-column all with or without
axial load. In addition, the proposed model is capable of determining: (1) the static and dynamic stability of 3D and 2D
beam-columns with or without the simultaneous bending and shear deformations; and (2) the effects of an eccentric end
axial load (tension or compression) on the natural frequencies of Timoshenko beam-columns with generalized end
conditions. The proposed model also captures the phenomena of modal interchanges in beams and beam-columns with
soft end connections (i.e., when the second-mode of vibration becomes the first mode and similarly with the upper modes)
as shown in Example 2.
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Analytical results obtained in this study indicate that: (1) the critical loads and natural frequencies increase
substantially by increasing the magnitude of the bending, torsional and lateral restraints at both ends; (2) compressive
axial loads and shear and torsional deformations always have the effect of reducing the natural frequencies, particularly
those of the lower modes of vibration, whereas tension axial loads (slightly lower than its P, in tension) increase
substantially the natural frequencies and lateral stability of beam-columns; and (3) the coupling effects among all
deformations (bending, shear and torsional) must not be ignored in the stability and vibration analyses of singly symmetry
beam-columns as described by Eqs. (22) and (52).

Further research on the effects of “mixed” torsion and the corresponding semirigid conditions at the supports capable to
capture lateral torsional buckling in symmetric and nonsymmetric Timoshenko beam-columns with generalized boundary
conditions is needed.
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