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The stability and free vibration analyses (i.e., buckling, natural frequencies and modal

shapes) of an orthotropic singly symmetric 3D Timoshenko beam-column with

generalized boundary conditions (i.e., with bending and torsional semirigid restraints

and lateral bracings as well as lumped masses at both ends) subjected to an eccentric

dynamic equilibrium (i.e., two transverse shear equations, two bending moment

equations and pure torsional moment equation) are sufficient to determine the natural

frequencies and the corresponding modal shapes of the beam-column in the two

principal planes of bending and torsion about its longitudinal axis. The proposed model

includes the coupling effects among: (1) the deformations due to bending, shear and

pure torsion; (2) inertias (translational, rotational and torsional) of all masses

considered; (3) eccentric axial loads applied at the ends, and (4) restraints at the

supports (bending, torsional and lateral bracings at both ends of the member). However,

the effects of axial deformations and warping torsion produced by the axial load are not

included; consequently the proposed model is not capable of capturing the phenomena

of torsional buckling or combined lateral bending–torsional buckling. The proposed

analytical model indicates that the stability and dynamic response of beam-columns are

highly sensitive to the coupling effects, particularly in members with both ends free to

rotate. The natural frequencies and modal shapes can be determined from the

eigenvalues of a full 4� 4 matrix for vibration in the plane of symmetry (using the

uncoupled equations of transverse force and moment equilibrium at both ends) and

from a full 6� 6 matrix for the coupled shear–bending–torsional vibration (using the

coupled equations of transverse shear, bending and torsional moment equilibrium at

both ends). Also, it is shown that the proposed method reproduces the phenomena of

modal interchanges (e.g. the second mode becoming the first mode and vise versa, etc.)

when the bending and torsional restraints at the ends of the beam-column become very

low. Four illustrative examples are presented showing the advantages and limitations of

the proposed method.

& 2009 Elsevier Ltd. All rights reserved.
All rights reserved.

stiz�abal-Ochoa).

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2009.08.015
mailto:jdaristi2@yahoo.com
mailto:jdaristi2@yahoo.com
mailto:jdaristi2@yahoo.com


ARTICLE IN PRESS

Nomenclature

A cross-sectional area of the beam-column
Asx and Asy effective shear areas along the x- and y-axes,

respectively
A1, A2, A3, A4, A5 and A6 constants required in the

vibration analysis of the beam-column in the
yz-plane

Ez elastic modulus of the beam-column along the
z-axis

F1, F2, F3 and F4 constants required in the vibration
analysis of the beam-column in the xz-plane

Gx and Gy transverse shear moduli of the beam-column
along the x- and y-axes, respectively

Gxy shear modulus of the beam-column under
torsion

Hx and Hy shear force along the member in the x- and y-
directions, respectively

Ia torsional inertia per unit of length of the
beam-column about z-axis

Ix and Iy second moment of area of the beam-column
cross section about the x-axis

J torsional moment of inertia of the cross
section of the beam-column

Jax, Jay and Jbx, Jby rotational inertias of the masses at
ends A and B about the x- and y-axes,
respectively

Jac and Jbc torsional inertias of the attached masses at
ends A and B about the z-axis, respectively

m mass per unit length of the beam-column
mL2r2

x and mL2r2
y rotatory inertias of the beam column

about the x- and y-axes, respectively
Ma and Mb rigid masses attached at the top and bottom

ends of the beam-column, respectively

Mx(x) and My(x) bending moment along the beam-
column about the x- and y-axes, respectively

L span of the beam-column
P end axial load applied at the centroid of the

cross section with coordinates (xa, 0); tensile
positive

Sax, Say and Sbx, Sby stiffness of the lateral bracings at
ends A and B along the x- and y-axes,
respectively

t time
T torsional moment
u(z, t) lateral deflection of the shear center of the

member along the x-axis
v(z, t) lateral deflection of the shear center of the

member along the y-axis
va lateral deflection of the centroidal line of the

member along the y-axis
z centroidal axis of the beam-column

gx and gy shear distortion of the member cross section
caused by transverse shear in the x- and y-

directions, respectively
yx and yybending rotations of the member cross section

about the x- and y-axes
c (z, t) torsional rotation about the shear center S

along the z-axis of the member [=C(z) sinot]
kax, kbx and kbx, kby stiffness of the rotational restraints

at ends A and B about the x- and y-axes,
respectively

kac and kbc stiffness of the torsional end restraints at
ends A and B, respectively (force�distance/
radian)
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1. Introduction

The stability and dynamic behavior of beams and beam-columns are of great importance in structural dynamics,
aerospace and earthquake engineering. The vibration analysis and seismic response of framed structures modeled as 2D
beams and columns have been studied by many researchers and treated extensively in the literature (see Thomson [1],
Blevins [2], Berg [3], Paz [4], Clough and Penzien [5], Chopra [6], among others) using different methods. Aristizabal-Ochoa
[7] has shown that the classic solutions for the vibration of 2D beams and beam-columns based on the Bernoulli–Euler
theory (that neglects the combined effects of shear deflections and rotational inertias along the member) violate the
equation of bending moment equilibrium, and consequently violate the principle of conservation of angular momentum. To
overcome these deficiencies Aristizabal-Ochoa [8,9] developed a method that determines the buckling loads and natural
frequencies of 2D shear beam-columns and shear buildings with generalized end conditions subjected to concentric linear
axial load along the member including the effects of end rotations and rotational inertias as well as the P-Delta effects.
However, 2D models generally do not take into account the real 3D behavior and the couplings amongst all deflections
(shear, torsional and rotational) and the translational, rotational and torsional inertias, as well as the second-order
(or P-Delta) effects.

The dynamics of 3D beams and beam-columns have been studied by many researchers. Banerjee et al. [10] studied the
warping effects on the natural frequencies of thin-walled beams with open sections. Banerjee [11] analyzed the influence of
the axial load on the natural frequencies of a cantilever beam. Li [12] presented the dynamic transfer matrix based on
Bernoulli–Euler beam theory including warping effects. Rafezy and Howson [13] developed the dynamic stiffness matrix
for a 3D shear beam with asymmetric cross section neglecting the effects of the axial load and bending rotations. More
recently, Viola et al. [14] investigated the changes in the magnitude of natural frequencies and modal response introduced
by the presence of a crack on an axially loaded uniform Timoshenko beam using the dynamic stiffness matrix. However,
studies on the stability and free vibration of 3D beam-columns with generalized end conditions including the combined
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effects of shear and bending deformations, translational, rotational and torsional inertias as well as P-Delta effects are
practically nonexistent. Therefore, there is a real need for a practical approach by which the stability and dynamic
characteristics (i.e., buckling loads, natural frequencies and modal shapes) of 3D asymmetrical beam-columns with any end
support conditions can be determined directly.

The main objective of this paper is to derive using the ‘‘modified’’ shear equation described by Timoshenko and Gere
[15] the characteristic equations for the undamped natural frequencies and the corresponding modes of vibration of an
orthotropic singly symmetrical 3D Timoshenko beam-column with generalized support conditions (i.e., with semirigid
flexural restraints and lateral bracings as well as lumped masses at both ends) subject to a constant eccentric axial load at
both ends. The proposed model is an extension of a 2D shear beam-column model developed by Aristizabal-Ochoa [7] and
is more general than any other model available in the literature including that presented by Banerjee [11], since it includes
generalized support conditions, orthotropic material properties, the effects of the shear force components induced by the
applied axial force as the member bends according to the ‘‘modified’’ shear equation (or Haringx approach), and end
masses. All these additional considerations and effects are important in the analysis and design of buildings and beam
structures with semirigid connections, particularly when made of composite materials. The effects of the shear force
component induced by the applied axial force as the member bends about one of its principal axis and buckling (under
both axial tension and compression forces) have been investigated experimentally and analytically by Kelly [16], Roberts
[17], and discussed recently by Aristizabal-Ochoa [18]. However, the effects of warping torsion are not included in this
study since it would require a much more complex model. To include these effects the model would become extremely
complex since it must include not only warping boundary conditions at both ends, but also the three dimensional couplings
between ‘‘mixed’’ torsion and biaxial bending caused by the applied loads as explained by Curver [19]. This objective is
beyond the scope of this paper. Consequently, the proposed method is not capable of capturing the phenomena of torsional
buckling or combined bending–torsional buckling reported by Timoshenko and Gere [20, pp. 225 and 229]. Four examples
are included that show the simplicity and versatility of the proposed model and corresponding equations in the
shear–bending–torsional free vibration of an orthotropic singly symmetrical 3D beam-columns with generalized support
conditions.
2. Structural model

Consider the singly symmetric 3D Timoshenko beam-column shown in Fig. 1 of length span L with closed cross section
with the shear center S located a distance xa from its centroid or mass center C along the axis of symmetry x. It is assumed
that the member is prismatic with straight centroidal axis z, subject to a constant axial load P (+ tension, � compression)
applied at both ends and along the z-axis, and mass per unit length m. Two rigid masses of magnitude Ma and Mb are
attached to its ends A and B with the corresponding rotational and torsional inertias Jax, Jay, Jac and Jbx, Jby, Jbc about the
x-, y- and z-axes, respectively. The properties of the member include: moments of inertia Ix and Iy about its cross section
main centroidal axes x and y; torsional moment of inertia J and torsional shear modulus Gxy; cross-section area A and axial
modulus Ez; effective shear-areas Asx and Asy with the corresponding shear moduli Gx and Gy; end torsional restraints kac

and kbc; end bending restraints kax, kbx and kay, kby about the local principal x- and y-axes, and end lateral restraints Sax, Sbx

and Say, Sby along the local principal x- and y-axes, respectively. Note that the end bending restraints kax, kbx and kay, kby as
well as the end torsional restraints kac and kbc (whose dimensions are in force–distance/radian) vary from zero for
perfectly hinged connections to infinity for fully restrained connections (i.e., perfectly clamped conditions). Likewise the
end lateral restraints Sax, Sbx and Say, Sby (whose dimensions are in force/distance) vary from zero for unbraced end
connections to infinity for fully braced end connections.

The elastic axis (assumed to coincide with the z-axis) deforms with translations u(z, t) and v(z, t) in the x- and
y-directions, respectively, and with a torsional rotation c(z, t) about the z-axis (where t denotes time). Note that for the
singly symmetric beam-column of Fig. 1, the translation u(z, t) which takes place in the xz-plane is uncoupled with the
torsional rotation c(z, t), whereas the translation v(z, t) is coupled with c(z, t). Two additional degrees of freedom must be
added, these are yx and yy which represent the rotations of the member cross section caused by the bending moments
about the x- and y-axes, respectively. The buckling and free vibration analyses about the x�z and yz-planes of a singly
symmetric Timoshenko beam-column are shown in the following sections.
2.1. Buckling and free vibration analyses in the xz-plane

Eqs. (1) and (2) can be obtained applying transverse and bending moment equilibrium when the member deflects in the
xz-plane:

qHx

qz
¼ m

q2u

qt2
; ð1Þ

qMy

qz
¼ Hx � P

qu

qz
�mL2r2

y

q2yy

qt2
: ð2Þ
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Fig. 1. Structural model: (a) member properties, masses and end connections; (b) forces and moments on the infinitesimal element (yz-plane); (c) forces

and moments on the infinitesimal element (xz-plane); (d) displacements of the closed cross section during the vibration in the xz-plane; and (e) bending

and shear deformations at a cross section in the xz-plane.
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According to Haringx’s approach (explained by Timoshenko and Gere [15]): Qx=Hx�Pyy=GxAsxgy and

gy ¼
qu

qz
� yy; ð3Þ

Hx ¼ GxAsx
qu

qz
� yy

� �
þ Pyy; ð4Þ

My ¼ �EzIy
qyy

qz
: ð5Þ

Using expressions (3)–(5), equilibrium Eqs. (1) and (2) can be expressed as follows:

GxAsx
q2u

qz2
�

qyy

qz

 !
þ P

qyy

qz
�m

q2u

qt2
¼ 0; ð6Þ

EzIy
q2yy

qz2
þ ðGxAsx � PÞ

qu

qz
� yy

� �
�mL2r2

y

q2yy

qt2
¼ 0: ð7Þ

The solutions to Eqs. (6) and (7) with P (+ tension, � compression) are assumed to be of the form:

uðz; tÞ ¼ UðzÞsinot; ð8Þ

yyðz; tÞ ¼ YyðzÞsinot: ð9Þ

Substituting expressions (8) and (9) into Eqs. (6) and (7):

GxAsx
q2U

qz2
�

qYy

qz

 !
þ P

qYy

qz
þmo2U ¼ 0; ð10Þ
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EzIy
q2Yy

qz2
þ ðGxAsx � PÞ

qU

qz
�Yy

� �
þmL2r2

yo
2Yy ¼ 0: ð11Þ

Eqs. (10) and (11) can be reduced to a single differential equation of four-order as follows:

d4U

dx4
þ ðp4

us2
u þ b2

us2
u � p2

u þ b2
ur2

y Þ
d2U

dx2
þ ðb2

up2
us2

u þ b4
us2

ur2
y � b2

uÞU ¼ 0; ð12Þ

where x ¼ z=L; b2
u ¼ mo2L4=EzIy; p2

u ¼ PL2=EzIy (axial-load parameter); s2
u ¼ EzIy=GxAsxL2 (bending-to-shear stiffness

parameter); and r2
y ¼ Iy=AL2 (slenderness parameter).

The solution to Eq. (12) is of the form U=cemz which after being substituted into Eq. (12) yields the following auxiliary
equation:

m4 þ ðp4
us2

u þ b2
us2

u � p2
u þ b2

ur2
y Þm

2 þ ðb2
up2

us2
u þ b4

us2
ur2

y � b2
uÞ ¼ 0: ð13Þ

The solution to Eq. (13) is of the form:

m2 ¼ �O7e; ð14Þ

where

O ¼
ðp4

us2
u þ b2

us2
u � p2

u þ b2
ur2

y Þ

2
;

and

e ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
4ðp

4
us2

u þ b2
us2

u � p2
u þ b2

ur2
y Þ

2
� ðb2

up2
us2

u þ b4
us2

ur2
y � b2

uÞ

q
:

Therefore, the four roots are

m ¼7w
ffiffiffiffiffiffiffi
�1
p

7Z; ð15Þ

where w ¼
ffiffiffi
e
p
þO; and Z ¼

ffiffiffi
e
p
�O.

The lateral deflection U can now be expressed as follows:

UðxÞ ¼ F1 coshZxþ F2 sinhZxþ F3 coswxþ F4 sinwx ð16Þ

and the rotation Yy of the cross section caused by bending along the member:

YyðxÞ ¼
d
L
½F1 sinhZxþ F2 coshZx� þ l

L
½F3 sinwx� F4 coswx�: ð17Þ

Now, applying the following four boundary conditions (i.e., transverse and rotational dynamic equilibrium at the ends)
in terms of the nondimensional parameters as the member AB deflects on the xz-plane:

At A x ¼ 0 :
dU

dx

� �
a

þ ðp2
us2

u � 1ÞYay � ðSax �Mab2
us2

uÞUa ¼ 0; ð18Þ

dYy

dx

� �
a

� ðRay � Jayb2
uÞYay ¼ �p2

uxa: ð19Þ

At B x ¼ 1 :
dU

dx

� �
b

þ ðp2
us2

u � 1ÞYby þ ðSbx �Mbb2
us2

uÞUb ¼ 0; ð20Þ

dYy

dx

� �
b

þ ðRby � Jbyb2
uÞYby ¼ �p2

uxa: ð21Þ

Using expressions (16) and (17) the following expressions can be obtained directly:

dU

dx
¼ F1Z sinhZxþ F2Z coshZx� F3w sinwxþ F4w coswx;

dYy

dx
¼ dZ½F1 coshZxþ F2 sinhZx� þ lw½F3 coswxþ F4 sinwx�;

Ua ¼ F1 þ F3;Ub ¼ F1 coshZþ F2 sinhZþ F3 coswþ F4 sinw;

dU

dx

� �
a

¼ ZF2 þ wF4;
dU

dx

� �
b

¼ ZðF1 sinhZþ F2 coshZÞ � wðF3 sinw� F4 coswÞ;
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Yay ¼ dF2 � lF4;Yby ¼ d½F1sinhZþ F2coshZ� þ l½F3sinw� F4cosw�;

dYy

dx

� �
a

¼ dZF1 þ lwF3;
dYy

dx

� �
b

¼ dZ½F1 coshZþ F2 sinhZ� þ lw½F3 coswþ F4 sinw�;

where

l ¼
�w2 þ b2

us2
u

wð1� p2
us2

uÞ
andd ¼

Z2 þ b2
us2

u

Zð1� p2
us2

uÞ
:

Characteristic equation. Eqs. (18)–(21) can be expressed in matrix form as follows:

c11 c12 c13 c14

c21 c22 c23 c24

c31 c32 c33 c34

c41 c42 c43 c44

2
66664

3
77775

F1

F2

F3

F4

8>>><
>>>:

9>>>=
>>>;
¼

0

�p2
uxa

0

�p2
uxa

8>>>><
>>>>:

9>>>>=
>>>>;
; ð22Þ

where

xa ¼ xa=L; c11 ¼ c13 ¼ �ðSax � b2
us2

uMaÞ; c12 ¼ Zþ ðp2
us2

u � 1Þd;

c14 ¼ w� ðp2
us2

u � 1Þl; c21 ¼ dZ; c22 ¼ �ðRay � b2
uJayÞd; c23 ¼ lw; c24 ¼ ðRay � b2

uJayÞl;

c31 ¼ bZþ ðp2
us2

u � 1ÞdcsinhZþ ðSbx � b2
us2

uMbÞcoshZ; c32 ¼ bZþ ðp2
us2

u � 1ÞdccoshZþ ðSbx � b2
us2

uMbÞsinhZ;

c33 ¼ b�wþ ðp2
us2

u � 1Þlcsinwþ ðSbx � b2
us2

uMbÞcosw; c34 ¼ bw� ðp2
us2

u � 1Þlccoswþ ðSbx � b2
us2

uMbÞsinw;

c41 ¼ dZ coshZþ ðRby � b2
uJbyÞd sinhZ; c42 ¼ dZ sinhZþ ðRby � b2

uJbyÞd coshZ;

c43 ¼ blw coswþ ðRby � b2
uJbyÞl sinwc and c44 ¼ blw sinw� ðRby � b2

uJbyÞl coswc:

Eq. (22) represents the dynamic stability of a singly symmetric Timoshenko beam-column with generalized end
conditions when it bends in the xz-plane only.

2.2. Buckling and free vibration analyses in the yz-plane (shear–bending–torsional coupling)

Knowing that the relationship between the lateral deflection of the centroid and the shear center is

va ¼ v� xac; ð23Þ

Transverse Equilibrium :
qHy

qz
¼ m

q2va
qt2
¼ m

q2v

qt2
� xa

q2c
qt2

 !
; ð24Þ

Bending Moment Equilibrium :
qMx

qz
¼ Hy � P

qv

qz
� xa

qc
qz

� �
�mL2r2

x

q2yx

qt2
; ð25Þ

Torsional Moment Equilibrium :
qT

qz
¼ Ia

q2c
qt2
�mxa

q2v

qt2
; ð26Þ

where Ia ¼ ðm=AÞðIx þ IyÞ þmx2
a.

Using Haringx’s approach (explained by Timoshenko and Gere [15]): Qy=Hy�Pyx=GyAsygx and

gx ¼
qv

qz
� yx; ð27Þ

Hy ¼ GyAsy
qv

qz
� yx

� �
þ Pyx: ð28Þ

Knowing that

T ¼ GxyJ
qc
qz
þ P

Ia
m

qc
qz
� Pxa

qv

qz
; ð29Þ

and

Mx ¼ �EzIx
qyx

qz
: ð30Þ
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Substituting expressions (27)–(30) into Eqs. (24)–(26):

GyAsy
q2v

qz2
�

qyx

qz

 !
þ P

qyx

qz
�m

q2v

qt2
� xa

q2c
qt2

 !
¼ 0; ð31Þ

EzIx
q2yx

qz2
þ ðGyAsy � PÞ

qv

qz
� yx

� �
þ Pxa

qc
qz
�mL2r2

x

q2yx

qt2
¼ 0; ð32Þ

GxyJ
q2c
qz2
þ P

Ia
m

q2c
qz2
� xa

q2v

qz2

 !
� Ia

q2c
qt2
þmxa

q2v

qt2
¼ 0: ð33Þ

Also knowing that m ¼ rA and Lrx ¼
ffiffiffiffiffiffiffiffiffi
Ix=A

p
, Eqs. (31)–(33) become

GyAsyðv
00 � yx

0 Þ þ Pyx
0 �mð €v � xa €cÞ ¼ 0; ð34Þ

EzIxyx
00 þ ðGyAsy � PÞðv0 � yxÞ þ Pxac0 � rIx

€yx ¼ 0; ð35Þ

GxyJc00 þ P
Ia
m
c00 � xav00

� �
� Ia €c þmxa €v ¼ 0: ð36Þ

The solutions to Eqs. (34)–(37) are of the form

vðz; tÞ ¼ VðzÞsinot; ð37Þ

yxðz; tÞ ¼ YxðzÞsinot; ð38Þ

cðz; tÞ ¼ CðzÞsinot: ð39Þ

Substituting expressions (37)–(39) into Eqs. (34)–(36):

GyAsyðV
00 �Yx

0 Þ þ PYx
0 þmo2V �mo2xaC ¼ 0; ð34aÞ

EzIxYx
00 þ ðGyAsy � PÞðV 0 �YxÞ þ PxaC0 þ rIxo2Yx ¼ 0; ð35aÞ

GxyJC00 þ P
Ia
m
C00 � xaV 00

� �
þ Iao2C�mo2xaV ¼ 0: ð36aÞ

Introducing the nondimensional length x ¼ z=L, and differential operator D ¼ d=dx and applying the chain’s rule:

GyAsyðV
00 � LYx

0 Þ þ PLYx
0 þmo2L2V �mo2xaL2C ¼ 0; ð34bÞ

EzIxYx
00 þ ðGyAsy � PÞðLV 0 � L2YxÞ þ PxaLC0 þ rIxo2L2Yx ¼ 0; ð35bÞ

GxyJC00 þ P
Ia
m
C00 � xaV 00

� �
þ Iao2L2C�mo2xaL2V ¼ 0: ð36bÞ

Eqs. (34b)–(36b) expressed in matrix form become

GyAsyD2 þmo2L2 ðP � GyAsyÞLD �mo2xaL2

ðGyAsy � PÞLD EzIxD2 þ ðP � GyAsyÞL2 þ rIxo2L2 PxaLD

�PxaD2 �mo2xaL2 0 GxyJD2 þ P
Ia
m

D2 þ Iao2L2

2
6664

3
7775

V

Yx

C

8><
>:

9>=
>; ¼ 0 ð37aÞ

Using Gauss elimination and expanding the determinant:

ðD6 þ aD4 � bD2 � cÞT ¼ 0 with T ¼ V ; Yx or C; ð38aÞ

where

a ¼ b2r2
x þ

a2b2ð1þ c2p2s2Þ � a2c2p4 � b2ðp2 � b2s2Þ þ p4s2ðb2 þ a2c2p2Þ

b2 þ a2p2
;

b ¼
b4ð1� b2s2r2

x Þ � a2b4c2s2ð1þ p2r2
x Þ þ a2b2ð2c2p2 � b2r2

x Þ � b2p2s2ðb2 þ 2a2c2p2Þ

b2 þ a2p2
;
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and

c ¼
a2b4c2ð1� b2r2

x s2 � p2s2Þ

b2 þ a2p2
:

The stability and free vibration analyses of the singly symmetric 3D orthotropic Timoshenko beam-column of Fig. 1
depend on the following 34 variables: Ez, Gx, Gy, Gxy, A, Asx, Asy, Ix, Iy, Ia, J, L, xa, P, m, o, kax, kay, kac, kbx, kby, kbc, Sax, Say, Sbx,

Sby, Ma, Mb, Jax, Jay, Jac, Jbx, Jby and Jbc. However, these variables can be grouped into 28 dimensionless parameters and indices
as follows: a2 ¼ Iao2L2=GxyJ, b2

u ¼ mo2L4=EzIy, b2 ¼ mo2L4=EzIx (frequency parameters); c2 ¼ 1�mx2
a=Ia (axial-load

eccentricity parameter); p2
u ¼ PL2=EzIy, p2 ¼ PL2=EzIx (axial-load parameters); s2

u ¼ EzIy=GxAsxL2, s2 ¼ EzIx=GyAsyL2 (bending-
to-shear stiffness parameters); r2

x ¼ Ix=AL2, r2
y ¼ Iy=AL2 (slenderness parameter); Rax ¼ kax=ðEzIx=LÞ, Ray ¼ kay=ðEzIy=LÞ,

Rbx ¼ kbx=ðEzIx=LÞ, Rby ¼ kby=ðEzIy=LÞ (bending indices at ends A and B, respectively); Sax ¼ Sax=ðGxAsx=LÞ, Say ¼ Say=ðGyAsy=LÞ

and Sbx ¼ Sbx=ðGxAsx=LÞ, Sby ¼ Sby=ðGyAsy=LÞ (lateral bracing indices at ends A and B, respectively); Ma ¼ Ma=mL and Mb ¼

Mb=mL (mass indices at ends A and B, respectively); Jax ¼ Jax=mL3, Jay ¼ Jay=mL3, Jbx ¼ Jbx=mL3, Jby ¼ Jby=mL3 (rotational-
mass indices at ends A and B, respectively); Jac ¼ Jac=IaL, Jbc ¼ Jbc=IaL (torsional-mass indices at ends A and B,
respectively); and kac ¼ kac=ðGxyJ=LÞ and kbc ¼ kbc=ðGxyJ=LÞ (torsional indices at A and B, respectively).

Solutions to Eq. (38) are taken from (http://mathworld.wolfram.com/search/) as follows:

a ¼ 2

ffiffiffi
q

3

r
cos

f
3

� �
�

a

3

" #1=2

; b ¼ 2

ffiffiffi
q

3

r
cos

p�f
3

� �
þ

a

3

" #1=2

; g ¼ 2

ffiffiffi
q

3

r
cos

pþ f
3

� �
þ

a

3

" #1=2

;

where

q ¼ b þ
1

3
ðaÞ2 and f ¼ cos�1 ð27c � 9ab � 2a3

Þ

2ða2
þ 3bÞ3=2

:

The displacement V(x), bending rotation Yx(x), and torsional rotation C(x) are expressed as follows:

VðxÞ ¼ A1 coshaxþ A2 sinhaxþ A3 cosbxþ A4 sinbxþ A5 cos gxþ A6 sin gx; ð39aÞ

YxðxÞ ¼ B1 sinhaxþ B2 coshaxþ B3 sinbxþ B4 cosbxþ B5 sin gxþ B6 cos gx; ð40Þ

CðxÞ ¼ C1 coshaxþ C2 sinhaxþ C3 cosbxþ C4 sinbxþ C5 cos gxþ C6 sin gx: ð41Þ

From Eq. (34a):

C ¼
GyAsyðV 00 �Yx

0 Þ þ PYx
0 þmo2V

mo2xa
: ð42Þ

Substituting expressions (39), (40) and (42) into Eq. (35a), coefficients B1–B6 are obtained in terms of coefficients A1–A6

as follows:

B1 ¼ A1a=L; B2 ¼ A2a=L; B3 ¼ �A3b=L; B4 ¼ A4b=L; B5 ¼ �A5g=L; and B6 ¼ A6g=L;

where

a ¼ að1þ a2b�2p2Þ

1� b2s2r2
x � a2s2 � p2s2ð1þ a2b�2p2Þ þ a2b�2p2

;

b ¼
bð1� b2b�2p2Þ

1� b2s2r2
x þ b2s2 � p2s2ð1� b2b�2p2Þ � b2b�2p2

;

g ¼ gð1� g2b�2p2Þ

1� b2s2r2
x þ g2s2 � p2s2ð1� g2b�2p2Þ � g2b�2p2

:

Likewise, substituting expressions (39), (40) and (42) into Eq. (36a), coefficients C1–C6 are obtained in terms of
coefficients A1–A6 as follows:

C1 ¼ A1ka=xa; C2 ¼ A2ka=xa; C3 ¼ A3kb=xa;

C4 ¼ A4kb=xa; C5 ¼ A5kg=xa; C6 ¼ A6kg=xa;

where

ka ¼
a2ðb2 þ p2a2Þð1� c2Þ

a2ðb2 þ p2a2Þ þ b2a2
; kb ¼

a2ðb2 � p2b2
Þð1� c2Þ

a2ðb2 � p2b2
Þ � b2b2

; kg ¼
a2ðb2 � p2g2Þð1� c2Þ

a2ðb2 � p2g2Þ � b2g2
;

http://mathworld.wolfram.com/search/
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dV

dx
¼ A1a sinhaxþ A2a coshax� A3b sinbxþ A4b cosbx� A5g sin gxþ A6g cosgx;

dYx

dx
¼

1

L
½aaðA1 coshaxþ A2 sinhaxÞ � bbðA3 cosbxþ A4 sinbxÞ � ggðA5 cosgxþ A6 sin gxÞ�;

dC
dx
¼

ka
xa
aðA1 sinhaxþ A2 coshaxÞ �

kb
xa

bðA3 sinbx� A4 cosbxÞ �
kg
xa
gðA5 sin gx� A6 cos gxÞ:

From Eq. (28):

HyðxÞ ¼
dV

dx
þ ðp2s2 � 1ÞLYx

� �
GyAsy

L

or

HyðxÞ ¼ ½gaðA1 sinhaxþ A2 coshaxÞ � gbðA3 sinbx� A4 cosbxÞ � ggðA5 sin gx� A6 cos gxÞ�GyAsy

L
: ð43Þ

From Eq. (29):

TðxÞ ¼ 1þ
a2p2

b2

� �
dC
dx
�

a2p2ð1� c2Þ

xab2

dV

dx

� �
GxyJ

L

or

TðxÞ ¼
aea
xa
ðA1 sinhaxþ A2 coshaxÞ �

beb
xa
ðA3 sinbx� A4 cosbxÞ �

geg
xa
ðA5 sin gx� A6 cos gxÞ

� �
GxyJ

L
: ð44Þ

From Eq. (30):

MxðxÞ ¼ �
EzIx

L

dYx

dx

or

MxðxÞ ¼ �½aaðA1coshaxþ A2sinhaxÞ � bbðA3cosbxþ A4sinbxÞ � ggðA5cosgxþ A6singxÞ� EzIx

L2
; ð45Þ

where ga ¼ aþ ðp2s2 � 1Þa; gb ¼ bþ ðp2s2 � 1Þb; gg ¼ gþ ðp2s2 � 1Þg;

ea ¼ 1þ
a2p2

b2

� �
ka �

a2p2ð1� c2Þ

b2
; eb ¼ 1þ

a2p2

b2

� �
kb �

a2p2ð1� c2Þ

b2
; and eg ¼ 1þ

a2p2

b2

� �
kg �

a2p2ð1� c2Þ

b2
:

Now, applying the boundary conditions when the member bends in the yz-plane and twists about the z-axis
simultaneously, the following expressions for the shear forces, bending moments, and torsional moments at the ends A and
B can be obtained:

At A ðx ¼ 0Þ : HA ¼ ðSay �o2MaÞVa; ð46aÞ

MA ¼ ð�kax þo2JaxÞYax; ð47aÞ

TA ¼ ðkac �o2JacÞCa: ð48aÞ

At B ðx ¼ 1Þ : HB ¼ ð�Sby þo2MbÞVb; ð49aÞ

MB ¼ ðkbx �o2JbxÞYbx; ð50aÞ

TB ¼ ð�kbc þo2JbcÞCb: ð51aÞ

Eqs. (46a)–(51a) can be expressed terms of the nondimensional parameters as follows:

GyAsy

L

dV

dx

� �
a

þ ðp2s2L� LÞYax � ðSay �Mab2s2ÞVa

� �
¼ 0; ð46bÞ

EzIx

L

dYx

dx

� �
a

� ðRax � Jaxb2ÞYax

� �
¼ 0; ð47bÞ
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GxyJ

L
1þ

a2p2

b2

� �
dC
dx

� �
a

�
a2p2ð1� c2Þ

xab2

dV

dx

� �
a

� ðkac � Jaca2ÞCa

� �
¼ 0; ð48bÞ

GyAsy

L

dV

dx

� �
b

þ ðp2s2L� LÞYbx þ ðSby �Mbb2s2ÞVb

� �
¼ 0; ð49bÞ

EzIx

L

dYx

dx

� �
b

þ ðRbx � Jbxb2ÞYbx

� �
¼ 0; ð50bÞ

GxyJ

L
1þ

a2p2

b2

� �
dC
dx

� �
b

�
a2p2ð1� c2Þ

xab2

dV

dx

� �
b

þ ðkbc � Jbca2ÞCb

� �
¼ 0: ð51bÞ

Characteristic equation. Knowing that

Va ¼ A1 þ A3 þ A5;Vb ¼ A1 coshaþ A2 sinhaþ A3 cosbþ A4 sinbþ A5 cosgþ A6 sin g;

dV

dx

� �
a

¼ A2aþ A4bþ A6g;

dV

dx

� �
b

¼ aðA1 sinhaþ A2 coshaÞ � bðA3 sinb� A4 cosbÞ � gðA5 sin g� A6 cos gÞ;

Yax ¼
1

L
ðaA2 þ bA4 þ gA6Þ;

Ybx ¼
1

L
½aðA1 sinhaþ A2 coshaÞ � bðA3 sinb� A4 cosbÞ � gðA5 sin g� A6 cos gÞ�;

dYx

dx

� �
a

¼
1

L
ðA1aa � A3bb � A5ggÞ;

dYx

dx

� �
b

¼
1

L
½aaðA1 coshaþ A2 sinhaÞ � bbðA3 cosbþ A4 sinbÞ � ggðA5 cos gþ A6 sin gÞ�;

Ca ¼ A1
ka
xa
þ A3

kb
xa
þ A5

kg
xa

;

Cb ¼
ka
xa
ðA1coshaþ A2sinhaÞ þ

kb
xa
ðA3cosbþ A4sinbÞ þ

kg
xa
ðA5cosgþ A6singÞ;

dC
dx

� �
a

¼ A2
ka
xa
aþ A4

kb
xa

bþ A6
kg
xa
g;

dC
dx

� �
b

¼
ka
xa
aðA1sinhaþ A2coshaÞ �

kb
xa

bðA3sinb� A4cosbÞ �
kg
xa
gðA5sing� A6cosgÞ:

Substituting these expressions into Eqs. (46b)–(51b), the 6� 6 matrix Eq. (52) can be obtained

a11 a12 a13 a14 a15 a16

a21 a22 a23 a24 a25 a26

a31 a32 a33 a34 a35 a36

a41 a42 a43 a44 a45 a46

a51 a52 a53 a54 a55 a56

a61 a62 a63 a64 a65 a66

2
6666666664

3
7777777775

A1

A2

A3

A4

A5

A6

8>>>>>>>>><
>>>>>>>>>:

9>>>>>>>>>=
>>>>>>>>>;
¼ 0; ð52Þ

where

a11 ¼ a13 ¼ a15 ¼ �ðSay �Mab2s2Þ; a12 ¼ ðp
2s2 � 1Þa þ a; a14 ¼ ðp

2s2 � 1Þb þ b;

a16 ¼ ðp
2s2 � 1Þg þ g; a21 ¼ aa; a22 ¼ �ðRax � Jaxb2Þa; a23 ¼ �bb;

a24 ¼ �ðRax � Jaxb2Þb; a25 ¼ �gg; a26 ¼ �ðRax � Jaxb2Þg;
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a31 ¼ �ðkac � Jaca2Þ
ka
xa
; a32 ¼ 1þ

a2p2

b2

� �
ka
xa
�

a2p2ð1� c2Þ

xab2

� �
a;

a33 ¼ �ðkac � Jaca2Þ
kb
xa
; a34 ¼ 1þ

a2p2

b2

� �
kb
xa
�

a2p2ð1� c2Þ

xab2

� �
b;

a35 ¼ �ðkac � Jaca2Þ
kg
xa
; a36 ¼ 1þ

a2p2

b2

� �
kg
xa
�

a2p2ð1� c2Þ

xab2

� �
g;

a41 ¼ baþ ðp2s2 � 1Þacsinhaþ ðSby �Mbb2s2Þcosha;

a42 ¼ baþ ðp2s2 � 1Þaccoshaþ ðSby �Mbb2s2Þsinha;

a43 ¼ �bbþ ðp2s2 � 1Þbcsinbþ ðSby �Mbb2s2Þcosb;

a44 ¼ bbþ ðp2s2 � 1Þbccosbþ ðSby �Mbb2s2Þsinb;

a45 ¼ �bgþ ðp2s2 � 1Þgcsin gþ ðSby �Mbb2s2Þcos g;

a46 ¼ bgþ ðp2s2 � 1Þgccosgþ ðSby �Mbb2s2Þsin g;

a51 ¼ ba coshaþ ðRbx � Jbxb2Þsinhaca; a52 ¼ ba sinhaþ ðRbx � Jbxb2Þcoshaca;

a53 ¼ �bb cosbþ ðRbx � Jbxb2Þsinbcb; a54 ¼ �bb sinb� ðRbx � Jbxb2Þcosbcb;

a55 ¼ �bg cos gþ ðRbx � Jbxb2Þsin gcg; a56 ¼ �bg sin g� ðRbx � Jbxb2Þcosgcg;

a61 ¼ 1þ
a2p2

b2

� �
ka
xa
�

a2p2ð1� c2Þ

xab2

� �
a sinhaþ ðkbc � Jbca2Þ

ka
xa

cosha;

a62 ¼ 1þ
a2p2

b2

� �
ka
xa
�

a2p2ð1� c2Þ

xab2

� �
a coshaþ ðkbc � Jbca2Þ

ka
xa

sinha;

a63 ¼ � 1þ
a2p2

b2

� �
kb
xa
�

a2p2ð1� c2Þ

xab2

� �
b sinbþ ðkbc � Jbca2Þ

kb
xa

cosb;

a64 ¼ 1þ
a2p2

b2

� �
kb
xa
�

a2p2ð1� c2Þ

xab2

� �
b cosbþ ðkbc � Jbca2Þ

kb
xa

sinb;

a65 ¼ � 1þ
a2p2

b2

� �
kg
xa
�

a2p2ð1� c2Þ

xab2

� �
g sin gþ ðkbc � Jbca2Þ

kg
xa

cos g;

a66 ¼ 1þ
a2p2

b2

� �
kg
xa
�

a2p2ð1� c2Þ

xab2

� �
g cos gþ ðkbc � Jbca2Þ

kg
xa

sin g:

Eq. (52) represents the free vibration eigen-value problem of the orthotropic singly symmetric 3D Timoshenko beam-
column shown in Fig. 1 when it bends in the yz-plane and twists about the z-axis simultaneously.

3. Methodology to extract frequencies and modes of vibration from Eqs. (22) and (52)

For the free vibration analyses of an orthotropic singly symmetric 3D Timoshenko beam-column with generalized
boundary conditions (shown in Fig. 1) the following steps are suggested:
(1)
 Enter the values of: Ez, Gx, Gy, Gxy, A, Asx, Asy, Ix, Iy, Ia, J, L, xa, P, m, kax, kay, kac, kbx, kby, kbc, Sax, Say, Sbx, Sby, Ma, Mb, Jax, Jay,
Jac, Jbx, Jby and Jbc.
(2)
 Enter the trial value o.

(3)
 Calculate the 28 dimensionless parameters and indices listed in Section 2.2.

(4)
 Calculate the values of w, , l, and d including all 16 coefficients cij of matrix Eq. (22) and xa ¼ xa=L as shown in Section

2.1 for the stability and vibration analyses in xz-plane. Then by making the determinant of the 4� 4 matrix of Eq. (22)
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equal to zero, the undamped natural frequencies o can be determined directly for a given value of the applied axial
force P, and the corresponding modes of vibration from Eqs. (16)–(17) once the eigen-vectors (values of F1–F4 for each
frequency) are found in a standard manner. Alternatively, by making the determinant of the 4� 4 matrix equal to zero
the buckling load Pcr of the member AB can be also determined directly for a given value of o. The static buckling loads
can be also determined from Eq. (22) by making o=0 in the eigen-value problem.
(5)
 Calculate the values of a, b, g, a, b, g, ka, kb, kg, ga, gb, gg including all 36 coefficients aij of matrix Eq. (52) listed in
Section 2.2 for the vibration analyses in yz-plane. By making the determinant of the 6� 6 matrix of Eq. (52) equal to
zero, the undamped natural frequencies o can be determined directly for a given value of the applied axial force P, and
the corresponding modes of vibration from Eqs. (39)–(41) once the corresponding eigen-vectors (values of A1–A6 for
each natural frequency) are found in a standard manner. Eq. (52) also represents the dynamic stability eigen-value
problem of a singly symmetric Timoshenko beam-column with generalized end conditions when it bends in the
yz-plane and twists about the z-axis. By making the determinant of the 6� 6 matrix equal to zero the buckling load Pcr

of the member AB can be determined directly for a given frequency o. The static buckling loads can be also determined
from Eq. (52) by making o=0 in the eigen-value problem.
It is important to emphasize that Eqs. (22) and (52) which are based on the Haringx’s approach (explained by
Timoshenko and Gere [15]) is capable of capturing the phenomena of buckling under axial tension. This has been proven
experimentally and analytically by Prof. Kelly at UC Berkeley [16] on elastomeric columns (see http://www.ce.washington.
edu/em03/proceedings/papers/611.pdf) and discussed in detail by the author [8,9,18,21].
4. Illustrative examples

4.1. Example 1: free vibration analysis of a 3D cantilever Timoshenko beam (effects of rotational stiffness at the base support on

the natural frequencies)

Determine the natural frequencies of a cantilever beam assuming the following properties: Ez=68.9�106 kN/m2;
Gy=26.5�106 kN/m2; r=2711 kg/m3; A= 3.08�10�4 m2; Ix=9.26�10�8 m4; EzIx=6.38 kN m2; GyAsy=4081 kN; GxyJ=0.04346
kN m2; m=0.835 kg/m; Ia=0.501�10�3 kg m; xa=0.0155 m and L=0.82 m. Analyze the following three cases: (1) P=0; (2)
P=1.79 kN (tension); (3) P=�1.79 kN (compression) and also for (a) rax=1; (b) rax=0.75; (c) rax=0.5; (d) rax=0.25; and (e)
rax=0. Compare the results with those presented by Banerjee [11] for case (a), clamped-free with rax=1.

Solution: The natural frequencies corresponding to the first four modes of vibration were calculated making the 6� 6
determinant from the matrix [D] corresponding to Eq. (52) equal to zero. Table 1 shows the first four natural frequencies of
e 1
ple 1: effects of the axial load and degree of fixity on the natural frequencies in the yz-plane of a cantilever beam-column (shear–bending–torsional

ling).

ode rax Natural frequency (Hz)

P=0 (p2=0) P=1.79 kN (p2=0.1886) Tension P=–1.79 kN (p2=�0.1886) Compression

Proposed model Banerjee [11] Proposed model Banerjee [11] Proposed model Banerjee [11]

1 62.34 62.34 64.58 64.59 59.98 59.97

0.75 54.44 56.91 51.81

0.50 44.51 47.38 41.40

0.25 31.32 35.11 26.95

0 115.22 15.51 114.17

1 129.9 129.9 131.6 131.6 128.1 128.1

0.75 125.2 126.6 123.7

0.50 121.2 122.4 119.9

0.25 117.9 119.0 116.7

0 228.0 116.2 223.9

1 259.2 259.2 262.4 262.4 256.0 256.0

0.75 248.6 252.0 245.1

0.50 240.0 243.7 236.4

0.25 233.3 237.1 229.4

0 414.8 231.9 409.4

1 418.9 424.6 424.6 424.6 413.1 413.1

0.75 417.9 423.5 412.2

0.50 416.9 422.5 411.2

0.25 415.9 421.3 410.3

0 492.2 420.2 489.1

http://www.ce.washington.edu/em03/proceedings/papers/611.pdf
http://www.ce.washington.edu/em03/proceedings/papers/611.pdf
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Fig. 2. Example 1: (a) first-; (b) second-; and (c) third-modal shapes of an axially loaded cantilever Timoshenko beam-column with p2=0.1886,

r2=0.00047, s2=0.0023 and for three different values of r: V( ), xaC( ) for r=1; V( ), xaC( ) for r=0.5; V( ), xaC ( )

for r=0; and (d) structural model.
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the cantilever beam with three cases different of load and five rotational stiffness kax, calculated for several values of ra

with the following equation:

rax ¼
1

1þ 3ðEzIx=LÞ=kax
; ð53Þ

where ra is called the fixity factor. Notice that ra is more convenient to use in the analysis of structures with semirigid
connections since it varies from 0 (for perfectly hinged connections) to 1 (for perfectly clamped connections), whereas the
rotational stiffness ka varies from 0 to N.

The obtained results for the case (a) clamped-free with r=1 were compared with those reported by Banerjee [11]
showing excellent agreement. Figs. 2 and 3 show the shapes corresponding to the first three modes of vibration (translation
V and torsion xaC) of the cantilever beam-column for different values of r under tension and compression, respectively.
Notice that the high modes of vibration are more sensitive to the degree of fixity at the base.
4.2. Example 2: free vibration analysis of a 3D cantilever Timoshenko beam (effects of torsional stiffness at the base)

Determine the natural frequencies of a cantilever beam assuming the following properties: Ez=2.1�108 kN/m2;
Gy=78.94736�106 kN/m2; r=7800 kg/m3; A=9�10�4 m2; Ix=19.638�10�8 m4; EzIx=41.241669 kN m2; GyAsy=35,530 kN;
GxyJ=2.368421 kN m2; m=7.02 kg/m; Ia=3.237�10�3 kg m; xa=0.0111 m; and L=1 m. Analyze the following three cases: (1)
P=15 kN; (2) P=�15 kN; and (3) P=0 and also for (a) kac=N; (b) kac=9GJ/L; (c) kac=3GJ/L; (d) kac=GJ/L; and (e) kac=0.
Compare the results with those reported by Viola et al. [14] for case (a) clamped-free with kac=N.

Solution: The natural frequencies corresponding to the first four modes of vibration were calculated making the 6� 6
determinant of matrix [D] of Eq. (52) equal to zero. Table 2 lists the natural frequencies for three different load cases and
five rotational stiffness kac. The obtained results for case (a) clamped-free with kac=N is compared with those reported by
Viola et al. [14]. The first three modes of vibration are shown in Fig. 4.
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Fig. 3. Example 1: (a) first-; (b) second-; and (c) third-modal shapes of an eccentrically loaded cantilever Timoshenko beam-column for two values of r:

V( ), xaC( ) for r=1; and V( ), xaC( ) for r=0; and (d) structural model.
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The stability and free vibration analyses in the xz-plane of a perfectly clamped cantilever Timoshenko beam-column
with kby ¼ Sbx ¼ Ma ¼ Mb ¼ P ¼ 0 and Sax=Ray=N can be obtained from the 4� 4 matrix of Eq. (22) resulting in the
following characteristic equation:

2þ
Z
w�

w
Z

� �
sinw sinhZ� lw

dZþ
dZ
lw

� �
cosw coshZ ¼ 0; ð54Þ

where l ¼ ð�w2 þ b2
us2

uÞ=w; and d ¼ ðZ2 þ b2
us2

uÞ=Z.
The natural frequencies for case (a) (clamped-free, ray= 1) listed in Table 3 were calculated using Eq. (54). The buckling

loads values were calculated using the following characteristic equation:

2þ
Z
w
�
w
Z

� �
sinw sinhZ� lw

dZ
þ
dZ
lw

� �
cosw coshZ ¼ lwp2

u

b2
u

; ð55Þ

where

l ¼
�w2 þ b2

us2
u

wð1� p2
us2

uÞ
and d ¼

Z2 þ b2
us2

u

Zð1� p2
us2

uÞ
:

The corresponding vibration mode shape from Eq. (16):

UðxÞ ¼ F ðcoswx� coshZxÞ þ F sinwxþ l
sinhZx

� �
; ð56Þ
3 4 d
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Table 2
Example 2: effects of axial load and torsional fixity on the natural frequencies in the yz-plane of a cantilever beam-column (shear–bending–torsional

coupling).

Mode kac Natural frequency (Hz)

P=0 (p2=0) P=15 kN (p2=0.3637) Tension P=�15 kN (p2=�0.3637) Compression

Proposed model Viola et al. [14] Proposed model Viola et al. [14] Proposed model Viola et al. [14]

1 N 42.538 42.485 45.331 45.270 39.483 39.435

9GJ/L 42.497 45.281 39.451

3GJ/L 42.414 45.178 39.385

GJ/L 42.147 44.848 39.177

0 46.717 49.823 43.327

2 N 233.548 233.546 235.236 235.239 231.732 231.723

9GJ/L 213.215 214.234 212.120

3GJ/L 180.648 181.233 180.031

GJ/L 130.710 131.109 130.303

0 266.253 269.352 263.104

3 N 276.750 276.737 278.590 278.583 274.988 274.970

9GJ/L 272.099 274.521 269.704

3GJ/L 269.200 271.985 266.397

GJ/L 267.412 270.398 264.387

0 459.383 460.355 458.409

4 N 632.144 632.138 634.712 634.735 629.558 629.523

9GJ/L 592.006 593.922 590.071

3GJ/L 540.781 542.127 539.422

GJ/L 494.337 495.416 493.253

0 726.330 729.015 723.633
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where

F3 ¼ p2
uxa

l
d
½Zþ ðp2

us2
u � 1Þd�coshZþ ½w� ðp2

us2
u � 1Þl�cosw

2þ
Z
w �

w
Z

� �
sinw sinhZ� lw

dZ þ
dZ
lw

� �
cosw coshZ� lwp2

u

b2
u

:

In the case of clamped-free Euler–Bernoulli beam [2,18] the first three natural frequencies are

o1 ¼
ð1:875Þ2

L2

ffiffiffiffiffiffiffiffi
EzIy

m

r
; o2 ¼

ð4:694Þ2

L2

ffiffiffiffiffiffiffiffi
EzIy

m

r
; o3 ¼

ð7:855Þ2

L2

ffiffiffiffiffiffiffiffi
EzIy

m

r
;

and for a clamped-free shear beam [2], the n-frequency is given by (Table 4)

on ¼
ð2n� 1Þp

2L

ffiffiffiffiffiffiffiffiffiffiffiffi
GxAsx

m

r
:

The results obtained using Eq. (54) are compared with results using these formulas in Table 5.
Fig. 4 shows the calculated modal shapes corresponding to the first three modes of vibration and the corresponding

variation of frequencies f against the axial load P for different values of the stiffness of the torsional end restraint kac (=N,
GJ/L, and zero).

4.3. Example 3: stability and dynamic analyses of a composite column made of E-glass fiber

Analyze a 200�200�10 mm composite column tested by Roberts [17] but partially restrained at both ends with the
following properties: Ez=1.886�107 kN/m2; Gx=2.671�106 kN/m2; (E-glass fiber) r=2550 kg/m3; m=14.79 kg/m; L=4.5 m;
A=5.8�10�3 m2; Asx=2�10�3 m2; Iy=4.16�10�5 m4; Sax=5000 kN/m; Sbx=25,000 kN/m; and ray=rby=r. Determine the static
critical loads and natural frequencies.

Solution: The static critical loads (i.e. assuming o=0) corresponding to the first three buckling modes in the xz-plane for
four different cases of fixity factors ray=rby=r=1, 0.75, 0.5, and 0.25 are listed in Table 6. Notice that the compressive
buckling loads are more sensitive to the magnitude of the end bending restraints than those of columns under tension.

Table 7 lists the axial loads corresponding to the first three modes of buckling in the xz-plane for the particular case of
perfectly pinned ends (i.e., ray=rby=0 and Sax=Sbx=N) using the proposed method and that by Arboleda-Monsalve et al.
[20]. The two methods yield very similar results. Notice that the value reported by Roberts [17] of Pcr=358 kN in
compression compares very well with the value of 358.5 kN obtained with the proposed method. The last two columns of
Table 7 and the results listed in Table 8 also show that the proposed method is capable of capturing the critical loads and
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Fig. 4. Example 2: (a) first-; (b) second-; and (c) third-modal shapes of an axially loaded cantilever Timoshenko beam-column with p2=�0.3637,

r2=0.000218, s2=0.00116: V( ), xaC( ) for kac=N; V( ), xaC( ) for kac=GJ/L; V( ), xaC( ) for kac=0; and (d) variation

of frequency f against the axial load P for different values of the stiffness of the torsional end restraint: ( ) for kac=N; ( ) for kac=GJ/L; and

( ) for kac=0.
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natural frequencies

on ¼
ðnpÞ2

L2

ffiffiffiffiffiffiffiffi
EzIy

m

r" #

of a pinned–pinned Euler–Bernoulli column (as GxAsx-N).
Table 9 shows the values of the natural frequencies of a partially restrained column for five different values of

ray=rby=r=1, 0.75, 0.5, 0.25, 0, and Sax=15,000 kN/m, Sbx=25,000 kN/m and three different values of P=0, 5 kN (tension) and
�5 kN (compression).

Fig. 5 shows the variations of the first-mode natural frequency in the xz-plane of the composite column with the applied
axial load P for four different values of ray=rby=r=1, 0.75, 0.5, 0.25 and 0. Notice that the first-mode natural frequency: (1)
decreases with the magnitude of the compressive axial load and when the fixity factors are reduced; (2) increases with the
magnitude of the tension axial load up reaching a peak located at a P value slightly less than Pcr and then decreases rapidly
to zero at Pcr in tension; and (3) the maximum frequency occurs at P=5340 kN and is not affected by the stiffness of the
rotational restraints.

4.4. Example 4: free vibration of a cantilever Timoshenko beam-column (sensitivity study)

A sensitivity study was carried out on the effects of axial load (tension and compression), axial load eccentricity, and
degree of fixity at the base support on the natural frequencies of a Timoshenko beam-column in the yz-plane (see Fig. 6d).

Figs. 6 and 7 show the variations of the first-mode natural frequency as the applied axial-load varies (from compression
to tension) and as the combined parameter s2b2/a2 varies, respectively for five different values of the axial-load eccentricity
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Table 3
Example 2: effects of axial load and degree of fixity on the natural frequencies in the xz-plane cantilever beam-column assuming EzIy=22.575 kN m2 and

GxAsx=32,897 kN.

Mode ray Natural frequency (Hz)

P=0 ðp2
u ¼ 0Þ P=15 kN ðp2

u ¼ 0:6644Þ Tension P=�15 kN ðp2
u ¼ 0:6644Þ Compression

1 1 31.674 35.351 27.346

0.75 26.329 30.082 21.754

0.50 20.652 24.783 15.226

0.25 14.048 19.202 4.523

0 138.387 12.664 132.973

2 1 196.324 200.676 191.859

0.75 171.536 176.034 166.903

0.50 156.101 160.844 151.194

0.25 145.751 150.732 140.575

0 442.675 143.576 438.363

3 1 540.344 544.096 536.566

0.75 486.923 490.843 482.971

0.50 463.420 467.502 459.300

0.25 450.634 454.827 446.400

0 905.433 446.944 901.496

4 1 1033.800 1037.400 1030.200

0.75 953.330 957.060 949.585

0.50 926.242 930.073 922.395

0.25 913.119 917.004 909.217

0 1508.900 909.352 1505.200

Table 4
Example 2: effects of degree of fixity on buckling Loadsa in the xz-plane.

Modea ray Pcr Proposed model (kN) Pe Euler load (kN) Pcr/Pe

1 1 55.6 55.7 0.998

0.75 45.1

0.50 32.1

0.25 16.7

0 221.3

2 1 493.9 501.3 0.985

0.75 406.5

0.50 324.3

0.25 262.8

0 868.3

3 1 1338.1 1392.5 0.961

0.75 1125.5

0.50 985.10

0.25 910.30

0 1896.0

a Note: Although the lowest critical buckling load is of main practical importance, the higher buckling modes should be taken in the context of duality

between free vibration and buckling problems.

Table 5
Example 2: natural frequencies for Euler–Bernoulli and shear beams (calculated using proposed model against those obtained from classical formulas).

Mode Natural frequency (Hz)

Proposed model GxAsx-N Euler–Bernoulli beam Proposed model EzIy-N Shear beam

1 31.72 31.72 541.19 541.19

2 198.49 198.86 1623.57 1623.57

3 554.29 556.87 2705.95 2705.95
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Table 6
Example 3: effects of degree of fixity on buckling loads.

Mode ray=rby Pcr (kN) Compression Pcr (kN) Tension

1 1 1241.7 5717.5

0.75 906.6 5597.6

0.50 653.3 5491.3

0.25 479.9 5406.2

0 358.5 5698.5

2 1 2145.6 6581.7

0.75 1725.7 6246.6

0.50 1483.7 5993.3

0.25 1337.7 5819.9

0 1241.7 6581.7

3 1 3640.2 7795.3

0.75 2927.6 7207.7

0.50 2608.2 6863.4

0.25 2461.6 6684.1

0 2381.4 7721.4

Table 7
Example 3: buckling loads (pinned–pinned column).

Mode Pcr (kN) Compression Pcr (kN) Tension Euler–Bernoulli column

Proposed model Arboleda et al. [19] Proposed model Arboleda et al. [19] Proposed model GxAsx-N Pe

1 358.5 358.0 5698.5 5697.7 382.6 382.6

2 1241.7 1239.5 6581.7 6579.6 1530.4 1530.4

3 2381.4 2379.6 7721.4 7719.3 3443.4 3443.4

Table 8
Example 3: Natural frequencies calculated using proposed model-versus-classical formulas for Euler–Bernoulli beam.

Mode Natural frequency (Hz)

Proposed model (GxAsx-N) Euler–Bernoulli beam Error (%)

1 17.84 17.87 0.2

2 70.99 71.48 0.7

3 158.37 160.84 1.5

Table 9
Example 3: effects of degree of fixity on the natural frequencies in the xz-plane of a partially restrained PFRP column.

Mode ray=rby Natural frequency (Hz)

P=0 (p2=0) P=5 kN (p2=0.1290) Tension P=�5 kN (p2=�0.1290) Compression

1 1 32.36 32.41 32.31

0.75 26.60 26.66 26.53

0.50 22.54 22.63 22.46

0.25 19.44 19.54 19.34

0 16.91 17.03 16.80

2 1 70.74 70.80 70.67

0.75 65.50 65.58 65.42

0.50 62.36 62.45 62.26

0.25 60.26 60.36 60.16

0 58.76 58.86 58.66

3 1 115.85 115.93 115.77

0.75 112.82 112.91 112.73

0.50 111.39 111.48 111.30

0.25 110.56 110.65 110.46

0 110.02 110.11 109.92
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values of the eccentricity parameter c2 [=0.05 ( ); .25 (- - -); 0.50 ( ); .75 (- - -); and 1 ( )] for two different values of the fixity factor r:

(a) r=0.5; and (b) r=1 assuming a bending-to-shear stiffness parameter s2=1/1000.
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parameter c2 and for two different values of fixity r (0.5 and 1) at the base of the cantilever. Notice that: (1) b2s2=a2 ¼

mGxyJ=IaGyAsy is the combined torsional-shear parameter; (2) the eccentricity parameter c2 ¼ 1�mx2
a=Ia varies from 1

(zero eccentricity) to 0 (maximum eccentricity); (3) a2 ¼ Iao2L2=GxyJ and b2 ¼ mo2L4=EzIx (frequency parameters),
p2 ¼ PL2=EzIx (axial-load parameter) and s2 ¼ EzIx=GyAsyL2 (bending-to-shear stiffness parameter).

Based on the results indicated by Figs. 6 and 7 it is concluded that the first-mode frequency in the yz-plane increases:
(1) almost linearly as the axial load is increased in tension, but it is reduced by compressive axial loads; (2) with the degree
of fixity at the base r but it is reduced by the torsional effects caused by the eccentricities (of the axial load and those of the
masses); and (3) low shear stiffness always have the effect of reducing the natural frequencies, whereas tension axial loads
increase substantially the natural frequencies.
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5. Summary and conclusions

The stability and free vibration analyses (i.e., lateral buckling loads, natural frequencies and modal shapes) of an
orthotropic singly symmetrical Timoshenko beam-column with generalized support conditions (i.e., with semirigid flexural
and torsional restraints and lateral bracings about and along the principal axes of bending as well as lumped masses at both
ends) subjected to an eccentric end axial load are derived in a classic manner. The proposed model include the three
dimensional coupling effects of all deformations (i.e., bending and shear about and along the principal axes of bending as
well as those caused by pure torsion along the axis of the member), a uniform mass distributed along its span, the applied
eccentric axial load (tension or compression) at both ends, the three dimensional inertias (translational, rotational and
torsional) of all masses considered. The effects of the shear force component induced by the applied axial force as the
member bends about each of its principal axes have been included as suggested by Haringx [16–18]. However, the effects of
warping torsion, torsional stability and combined bending–torsional buckling are not included in this study since it would
require a much more complex model. To include these effects the model must include not only the three dimensional
couplings between ‘‘mixed’’ torsion and biaxial bending as shown by Curver [19] but also extremely complex semirigid
conditions to resist warping torsion at both ends. Consequently, the proposed method is not capable of capturing the
phenomena of torsional buckling or combined bending–torsional buckling. However, the proposed model is more general
than any other model available in the technical literature including that presented by Banerjee [11] and Aristizabal-Ochoa
[18], since it includes generalized 3D support conditions, orthotropic material properties, the effects of the shear force
components induced by the applied axial force as the member bends about both principal axes (according to the
‘‘modified’’ shear equation or Haringx approach), and 3D end masses. All these additional considerations and effects are
important in the analysis and design of buildings and beam structures, particularly when made of materials with low shear
moduli.

The stability and free vibration analyses of a singly symmetrical orthotropic Timoshenko beam-column as presented in
this paper depend on 34 variables: Ez, Gx, Gy, Gxy, A, Asx, Asy, Ix, Iy, Ia, J, L, xa, P, m, o, kax, kay, kac, kbx, kby, kbc, Sax, Say, Sbx, Sby,
Ma, Mb, Jax, Jay, Jac, Jbx, Jby and Jbc. However, these variables can group into 28 nondimensional parameters and indices. The
proposed equations have the capability of modeling the simplified beams, and beam-columns cases like those based on the
following classic theories: (1) Bernoulli–Euler; (2) Rayleigh; (3) Timoshenko; (4) shear beam-column all with or without
axial load. In addition, the proposed model is capable of determining: (1) the static and dynamic stability of 3D and 2D
beam-columns with or without the simultaneous bending and shear deformations; and (2) the effects of an eccentric end
axial load (tension or compression) on the natural frequencies of Timoshenko beam-columns with generalized end
conditions. The proposed model also captures the phenomena of modal interchanges in beams and beam-columns with
soft end connections (i.e., when the second-mode of vibration becomes the first mode and similarly with the upper modes)
as shown in Example 2.
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Analytical results obtained in this study indicate that: (1) the critical loads and natural frequencies increase
substantially by increasing the magnitude of the bending, torsional and lateral restraints at both ends; (2) compressive
axial loads and shear and torsional deformations always have the effect of reducing the natural frequencies, particularly
those of the lower modes of vibration, whereas tension axial loads (slightly lower than its Pcr in tension) increase
substantially the natural frequencies and lateral stability of beam-columns; and (3) the coupling effects among all
deformations (bending, shear and torsional) must not be ignored in the stability and vibration analyses of singly symmetry
beam-columns as described by Eqs. (22) and (52).

Further research on the effects of ‘‘mixed’’ torsion and the corresponding semirigid conditions at the supports capable to
capture lateral torsional buckling in symmetric and nonsymmetric Timoshenko beam-columns with generalized boundary
conditions is needed.
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